Department of Chemistry, Physical Chemistry, University of Gothenburg, SE-412 96 Gothenburg, Sweden.
J Phys Chem A. 2009 Dec 31;113(52):14824-30. doi: 10.1021/jp904954k.
Spin-orbit coupling between the two collinear (2)Pi and (4)Sigma(-) potential energy surfaces for the NCO system are calculated using the RASSI method with CASSCF wave functions as basis set. The GDVR method has been used to interpolate a spin-orbit coupling surface. Wave packet and quasi-classical trajectory surface hopping calculations have been performed and compared for both the O((3)P) + CN(X(2)Sigma(+)) --> N((4)S) + CO(X(1)Sigma(+)) reaction and for electronically inelastic scattering in the N + CO channels. The O + CN nonadiabatic reaction probabilities are small. The wavepacket study gives a resonance structure. Also for the N + CO electronically inelastic scattering the wave packet calculations give a distinct resonance structure with peak transition probabilities up to around 10%, which is somewhat lower than the trajectory surface hopping results.
利用 RASSI 方法和 CASSCF 波函数作为基组,计算了 NCO 体系中两个共线 (2)Pi 和 (4)Sigma(-) 势能面之间的自旋轨道耦合。GDVR 方法已用于插值自旋轨道耦合面。对 O((3)P) + CN(X(2)Sigma(+)) --> N((4)S) + CO(X(1)Sigma(+)) 反应和 N + CO 通道中的电子非弹性散射进行了波包和准经典轨迹表面跳跃计算,并进行了比较。O + CN 非绝热反应概率很小。波包研究给出了共振结构。对于 N + CO 的电子非弹性散射,波包计算也给出了明显的共振结构,峰值跃迁概率高达约 10%,略低于轨迹表面跳跃结果。