Suppr超能文献

使用新型磁针和纳米颗粒增强白血病细胞检测。

Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles.

作者信息

Jaetao Jason E, Butler Kimberly S, Adolphi Natalie L, Lovato Debbie M, Bryant Howard C, Rabinowitz Ian, Winter Stuart S, Tessier Trace E, Hathaway Helen J, Bergemann Christian, Flynn Edward R, Larson Richard S

机构信息

Department of Pathology, University of New Mexico and Cancer Research and Treatment Center, Albuquerque, New Mexico 87131, USA.

出版信息

Cancer Res. 2009 Nov 1;69(21):8310-6. doi: 10.1158/0008-5472.CAN-09-1083. Epub 2009 Oct 6.

Abstract

Acute leukemia is a hematopoietic malignancy for which the accurate measurement of minimal residual disease is critical to determining prognosis and treatment. Although bone marrow aspiration and light microscopy remain the current standard of care for detecting residual disease, these approaches cannot reliably discriminate less than 5% lymphoblast cells. To improve the detection of leukemia cells in the marrow, we developed a novel apparatus that utilizes antibodies conjugated to superparamagnetic iron oxide nanoparticles (SPION) and directed against the acute leukemia antigen CD34, coupled with a "magnetic needle" biopsy. Leukemia cell lines expressing high or minimal CD34 were incubated with anti-CD34-conjugated SPIONs. Three separate approaches including microscopy, superconducting quantum interference device magnetometry, and in vitro magnetic needle extraction were then used to assess cell sampling. We found that CD34-conjugated nanoparticles preferentially bind high CD34-expressing cell lines. Furthermore, the magnetic needle enabled identification of both cell line and patient leukemia cells diluted into normal blood at concentrations below those normally found in remission marrow samples. Finally, the magnetic needle enhanced the percentage of lymphoblasts detectable by light microscopy by 10-fold in samples of fresh bone marrow aspirate approximating minimal residual disease. These data suggest that bone marrow biopsy using antigen-targeted magnetic nanoparticles and a magnetic needle for the evaluation of minimal residual disease in CD34-positive acute leukemias can significantly enhance sensitivity compared with the current standard of care.

摘要

急性白血病是一种造血系统恶性肿瘤,对于其微小残留病的准确测量对于确定预后和治疗至关重要。尽管骨髓穿刺和光学显微镜检查仍是目前检测残留病的标准治疗方法,但这些方法无法可靠地区分少于5%的淋巴母细胞。为了提高骨髓中白血病细胞的检测能力,我们开发了一种新型仪器,该仪器利用与超顺磁性氧化铁纳米颗粒(SPION)偶联并针对急性白血病抗原CD34的抗体,结合“磁针”活检。将表达高或低水平CD34的白血病细胞系与抗CD34偶联的SPION一起孵育。然后使用三种不同的方法,包括显微镜检查、超导量子干涉仪磁力测量法和体外磁针提取法来评估细胞采样。我们发现,CD34偶联的纳米颗粒优先结合高表达CD34的细胞系。此外,磁针能够识别稀释到正常血液中的细胞系和患者白血病细胞,其浓度低于缓解期骨髓样本中通常发现的浓度。最后,在接近微小残留病的新鲜骨髓穿刺样本中,磁针使光学显微镜可检测到的淋巴母细胞百分比提高了10倍。这些数据表明,与目前的标准治疗方法相比,使用抗原靶向磁性纳米颗粒和磁针进行骨髓活检以评估CD34阳性急性白血病中的微小残留病可显著提高灵敏度。

相似文献

1
Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles.
Cancer Res. 2009 Nov 1;69(21):8310-6. doi: 10.1158/0008-5472.CAN-09-1083. Epub 2009 Oct 6.
3
[Distribution of antigenic aberration in the bone marrow of acute leukemia in complete remission].
Korean J Lab Med. 2008 Feb;28(1):1-7. doi: 10.3343/kjlm.2008.28.1.1.
5
CD34 immunohistochemistry in bone marrow biopsies for early response assessment in acute myeloid leukemia.
Int J Lab Hematol. 2015 Dec;37(6):746-51. doi: 10.1111/ijlh.12406. Epub 2015 Aug 6.
8
CD7 is expressed on a subset of normal CD34-positive myeloid precursors.
Eur J Haematol. 2018 Sep;101(3):318-325. doi: 10.1111/ejh.13100. Epub 2018 Jul 4.
9
[Expression of AC133 vs. CD34 in acute childhood leukemias].
Klin Padiatr. 2000 May-Jun;212(3):90-8. doi: 10.1055/s-2000-9659.
10
Monoclonal antibodies in the management of acute leukemia.
Am J Hematol. 1995 Nov;50(3):188-99. doi: 10.1002/ajh.2830500307.

引用本文的文献

1
Advances in magnetic nanoparticles for molecular medicine.
Chem Commun (Camb). 2025 Feb 13;61(15):3093-3108. doi: 10.1039/d4cc05167j.
2
Thermophilic Exopolysaccharide Films: A Potential Device for Local Antibiotic Delivery.
Pharmaceutics. 2023 Feb 7;15(2):557. doi: 10.3390/pharmaceutics15020557.
3
Cancer nanotechnology: current status and perspectives.
Nano Converg. 2021 Nov 2;8(1):34. doi: 10.1186/s40580-021-00282-7.
4
Discrimination of radiosensitive and radioresistant murine lymphoma cells by Raman spectroscopy and SERS.
Biomed Opt Express. 2019 Dec 23;11(1):388-405. doi: 10.1364/BOE.11.000388. eCollection 2020 Jan 1.
5
Novel Approaches to Ovarian Cancer Screening.
Curr Oncol Rep. 2019 Jul 26;21(8):75. doi: 10.1007/s11912-019-0816-0.
6
Early Detection of Ovarian Cancer.
Hematol Oncol Clin North Am. 2018 Dec;32(6):903-914. doi: 10.1016/j.hoc.2018.07.003. Epub 2018 Sep 28.
7
Engineering the Surface of Therapeutic "Living" Cells.
Chem Rev. 2018 Feb 28;118(4):1664-1690. doi: 10.1021/acs.chemrev.7b00157. Epub 2018 Jan 16.
8
Screening for ovarian cancer: imaging challenges and opportunities for improvement.
Ultrasound Obstet Gynecol. 2018 Mar;51(3):293-303. doi: 10.1002/uog.17557.
9
A Feasibility Study of Nonlinear Spectroscopic Measurement of Magnetic Nanoparticles Targeted to Cancer Cells.
IEEE Trans Biomed Eng. 2017 May;64(5):972-979. doi: 10.1109/TBME.2016.2584241. Epub 2016 Jun 23.
10
Nanotechnology applications in hematological malignancies (Review).
Oncol Rep. 2015 Sep;34(3):1097-105. doi: 10.3892/or.2015.4100. Epub 2015 Jul 2.

本文引用的文献

1
Characterization of magnetite nanoparticles for SQUID-relaxometry and magnetic needle biopsy.
J Magn Magn Mater. 2009 May 1;321(10):1459-1464. doi: 10.1016/j.jmmm.2009.02.067.
2
Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia.
Clin Cancer Res. 2008 Jan 15;14(2):396-404. doi: 10.1158/1078-0432.CCR-07-1823.
3
Use of a SQUID array to detect T-cells with magnetic nanoparticles in determining transplant rejection.
J Magn Magn Mater. 2007 Apr;311(1):429-435. doi: 10.1016/j.jmmm.2006.10.1148.
4
Magnetic needles and superparamagnetic cells.
Phys Med Biol. 2007 Jul 21;52(14):4009-25. doi: 10.1088/0031-9155/52/14/001. Epub 2007 Jun 8.
5
Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells.
Anal Chem. 2006 May 1;78(9):2918-24. doi: 10.1021/ac052015r.
6
Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells.
J Cancer Res Clin Oncol. 2006 May;132(5):287-92. doi: 10.1007/s00432-006-0076-x. Epub 2006 Jan 24.
7
Antibody conjugates and therapeutic strategies.
Mol Interv. 2005 Dec;5(6):368-80. doi: 10.1124/mi.5.6.9.
8
Cell-specific targeting of nanoparticles by multivalent attachment of small molecules.
Nat Biotechnol. 2005 Nov;23(11):1418-23. doi: 10.1038/nbt1159. Epub 2005 Oct 23.
9
Targeted drug delivery in cancer therapy.
Technol Cancer Res Treat. 2005 Aug;4(4):363-74. doi: 10.1177/153303460500400405.
10
A biomagnetic system for in vivo cancer imaging.
Phys Med Biol. 2005 Mar 21;50(6):1273-93. doi: 10.1088/0031-9155/50/6/016. Epub 2005 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验