Suppr超能文献

证据表明,囊泡相关膜蛋白 2 与酸性磷脂之间的静电相互作用可能调节运输囊泡与质膜的融合。

Evidence that electrostatic interactions between vesicle-associated membrane protein 2 and acidic phospholipids may modulate the fusion of transport vesicles with the plasma membrane.

机构信息

Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

Mol Biol Cell. 2009 Dec;20(23):4910-9. doi: 10.1091/mbc.e09-04-0284. Epub 2009 Oct 7.

Abstract

The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in beta cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.

摘要

囊泡相关膜蛋白 (VAMP) 2 的跨膜结构域(也称为突触融合蛋白 2)含有一个保守的碱性/疏水性残基簇,可能在膜融合中发挥重要作用。我们对该结构域相应肽段的测量确定了 VAMP2 该结构域与胰岛素颗粒或其他运输小泡中相邻脂质双层结合的静电和疏水力。在跨膜结构域内突变降低 VAMP2 净正电荷的残基,从而降低其与膜的相互作用,会抑制β细胞中胰岛素颗粒的分泌。在通透化细胞中增加盐浓度,减少静电相互作用,也会导致胰岛素分泌抑制。同样,具有两亲性的弱碱性物质(如神经鞘氨醇)可逆转双层的负静电表面电势,从而逆转重组 VAMP2 蛋白的带正电荷的跨膜结构域的膜结合,并抑制膜融合。我们提出了一个模型,其中带正电荷的 VAMP 和突触融合蛋白的跨膜结构域通过桥接带负电荷的囊泡和质膜小叶来促进融合。

相似文献

4
The t-SNAREs syntaxin4 and SNAP23 but not v-SNARE VAMP2 are indispensable to tether GLUT4 vesicles at the plasma membrane in adipocyte.
Biochem Biophys Res Commun. 2010 Jan 15;391(3):1336-41. doi: 10.1016/j.bbrc.2009.12.045. Epub 2009 Dec 16.
5
Dual-mode of insulin action controls GLUT4 vesicle exocytosis.
J Cell Biol. 2011 May 16;193(4):643-53. doi: 10.1083/jcb.201008135. Epub 2011 May 9.
6
Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c in vitro.
PLoS One. 2008;3(12):e4074. doi: 10.1371/journal.pone.0004074. Epub 2008 Dec 31.
7
Myosin IIA participates in docking of Glut4 storage vesicles with the plasma membrane in 3T3-L1 adipocytes.
Biochem Biophys Res Commun. 2010 Jan 1;391(1):995-9. doi: 10.1016/j.bbrc.2009.12.004. Epub 2009 Dec 5.
8
Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion.
J Cell Biol. 2008 Jul 28;182(2):355-66. doi: 10.1083/jcb.200801056. Epub 2008 Jul 21.
9
Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion.
Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14761-6. doi: 10.1073/pnas.0606881103. Epub 2006 Sep 25.

引用本文的文献

1
Glycerophospholipids in ALS: insights into disease mechanisms and clinical implication.
Mol Neurodegener. 2025 Jul 26;20(1):85. doi: 10.1186/s13024-025-00876-3.
2
Why are so many fusogens rod-shaped?
bioRxiv. 2025 Jul 3:2025.06.30.662463. doi: 10.1101/2025.06.30.662463.
3
Single-Vesicle Microelectroanalysis Reveals the Role of PIP2 Phospholipid in Vesicle Opening Dynamics and Its Potential Role in Exocytosis.
ACS Omega. 2025 May 1;10(18):18889-18898. doi: 10.1021/acsomega.5c00864. eCollection 2025 May 13.
4
Electrical Forces Improve Memory in Old Age.
Rev Physiol Biochem Pharmacol. 2025;187:453-520. doi: 10.1007/978-3-031-68827-0_21.
5
Syntaxin 3B: A SNARE Protein Required for Vision.
Int J Mol Sci. 2024 Oct 3;25(19):10665. doi: 10.3390/ijms251910665.
6
Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm.
Front Cell Dev Biol. 2024 Sep 23;12:1457638. doi: 10.3389/fcell.2024.1457638. eCollection 2024.
7
Vesicle fusion and release in neurons under dynamic mechanical equilibrium.
iScience. 2024 Apr 19;27(5):109793. doi: 10.1016/j.isci.2024.109793. eCollection 2024 May 17.
10
Mass spectrometry uncovers intermediates and off-pathway complexes for SNARE complex assembly.
Commun Biol. 2023 Feb 20;6(1):198. doi: 10.1038/s42003-023-04548-0.

本文引用的文献

1
Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis.
Neuron. 2009 Jun 11;62(5):683-94. doi: 10.1016/j.neuron.2009.04.024.
2
Is assembly of the SNARE complex enough to fuel membrane fusion?
J Biol Chem. 2009 May 8;284(19):13143-52. doi: 10.1074/jbc.M900703200. Epub 2009 Mar 3.
3
Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion.
Mol Biol Cell. 2008 Dec;19(12):5093-103. doi: 10.1091/mbc.e08-03-0235. Epub 2008 Sep 17.
4
Membrane fusion: SNAREs and regulation.
Cell Mol Life Sci. 2008 Sep;65(18):2814-32. doi: 10.1007/s00018-008-8352-3.
6
Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion.
J Cell Biol. 2008 Jul 28;182(2):355-66. doi: 10.1083/jcb.200801056. Epub 2008 Jul 21.
7
Synaptic vesicle fusion.
Nat Struct Mol Biol. 2008 Jul;15(7):665-74. doi: 10.1038/nsmb.1450.
8
Membrane fusion.
Nat Struct Mol Biol. 2008 Jul;15(7):658-64. doi: 10.1038/nsmb.1451.
9
The fusion pores of Ca2+ -triggered exocytosis.
Nat Struct Mol Biol. 2008 Jul;15(7):684-9. doi: 10.1038/nsmb.1449. Epub 2008 Jul 3.
10
Mechanics of membrane fusion.
Nat Struct Mol Biol. 2008 Jul;15(7):675-83. doi: 10.1038/nsmb.1455.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验