Suppr超能文献

组蛋白 H3 内部新的尾部相互作用调控组蛋白 H3 第 36 位赖氨酸的 K36 甲基化

Set2-dependent K36 methylation is regulated by novel intratail interactions within H3.

机构信息

Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA.

出版信息

Mol Cell Biol. 2009 Dec;29(24):6413-26. doi: 10.1128/MCB.00876-09. Epub 2009 Oct 12.

Abstract

Posttranslational modifications to histones have been studied extensively, but the requirement for the residues within the tails for different stages of transcription is less clear. Using RNR3 as a model, we found that the residues within the N terminus of H3 are predominantly required for steps after transcription initiation and chromatin remodeling. Specifically, deleting as few as 20 amino acids, or substituting glutamines for lysines in the tail, greatly impaired K36 methylation by Set2. The mutations to the tail described here preserve the residues predicted to fill the active site of Set2, and the deletion mimics the recently described cleavage of the H3 tail that occurs during gene activation. Importantly, maintaining the charge of the unmodified tail by arginine substitutions preserves Set2 function in vivo. The H3 tail is dispensable for Set2 recruitment to genes but is required for the catalytic activity of Set2 in vitro. We propose that Set2 activity is controlled by novel intratail interactions which can be influenced by modifications and changes to the structure of the H3 tail to control the dynamics and localization of methylation during elongation.

摘要

组蛋白的翻译后修饰已经得到了广泛的研究,但对于不同转录阶段中尾部残基的需求还不是很清楚。我们以 RNR3 为模型,发现 H3 尾部的 N 端残基主要是转录起始和染色质重塑之后步骤所必需的。具体来说,删除多达 20 个氨基酸,或用尾部的谷氨酰胺取代赖氨酸,会极大地损害 Set2 对 K36 的甲基化。这里描述的尾部突变保留了预测填充 Set2 活性位点的残基,并且该缺失模拟了在基因激活过程中最近描述的 H3 尾部的切割。重要的是,通过精氨酸取代来保持未修饰尾部的电荷,在体内保留了 Set2 的功能。H3 尾部对于 Set2 招募到基因上是可有可无的,但对于 Set2 在体外的催化活性是必需的。我们提出,Set2 的活性是由新的尾部内部相互作用所控制的,这些相互作用可以受到修饰和 H3 尾部结构变化的影响,以控制延伸过程中甲基化的动力学和定位。

相似文献

1
Set2-dependent K36 methylation is regulated by novel intratail interactions within H3.
Mol Cell Biol. 2009 Dec;29(24):6413-26. doi: 10.1128/MCB.00876-09. Epub 2009 Oct 12.
2
Set2-catalyzed methylation of histone H3 represses basal expression of GAL4 in Saccharomyces cerevisiae.
Mol Cell Biol. 2003 Sep;23(17):5972-8. doi: 10.1128/MCB.23.17.5972-5978.2003.
4
Histone H3 K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe.
Eukaryot Cell. 2005 Aug;4(8):1446-54. doi: 10.1128/EC.4.8.1446-1454.2005.
6
The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2.
Mol Cell Biol. 2006 Apr;26(8):3029-38. doi: 10.1128/MCB.26.8.3029-3038.2006.
7
Asf1 can promote trimethylation of H3 K36 by Set2.
Mol Cell Biol. 2010 Mar;30(5):1116-29. doi: 10.1128/MCB.01229-09. Epub 2010 Jan 4.
9
A conserved genetic interaction between Spt6 and Set2 regulates H3K36 methylation.
Nucleic Acids Res. 2019 May 7;47(8):3888-3903. doi: 10.1093/nar/gkz119.
10
Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex.
Cell. 2005 Nov 18;123(4):593-605. doi: 10.1016/j.cell.2005.10.025.

引用本文的文献

3
A conserved genetic interaction between Spt6 and Set2 regulates H3K36 methylation.
Nucleic Acids Res. 2019 May 7;47(8):3888-3903. doi: 10.1093/nar/gkz119.
4
Balancing acts of SRI and an auto-inhibitory domain specify Set2 function at transcribed chromatin.
Nucleic Acids Res. 2015 May 26;43(10):4881-92. doi: 10.1093/nar/gkv393. Epub 2015 Apr 29.
5
Distribution and maintenance of histone H3 lysine 36 trimethylation in transcribed locus.
PLoS One. 2015 Mar 16;10(3):e0120200. doi: 10.1371/journal.pone.0120200. eCollection 2015.
6
Histone proteolysis: a proposal for categorization into 'clipping' and 'degradation'.
Bioessays. 2015 Jan;37(1):70-9. doi: 10.1002/bies.201400118. Epub 2014 Oct 28.
7
Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly.
Mol Cell Biol. 2014 Nov 15;34(22):4115-29. doi: 10.1128/MCB.00695-14. Epub 2014 Sep 2.
9
Interaction of SET domains with histones and nucleic acid structures in active chromatin.
Clin Epigenetics. 2011 Apr;2(1):17-25. doi: 10.1007/s13148-010-0015-1. Epub 2011 Jan 14.
10
Ascending the nucleosome face: recognition and function of structured domains in the histone H2A-H2B dimer.
Biochim Biophys Acta. 2012 Aug;1819(8):892-901. doi: 10.1016/j.bbagrm.2012.04.001. Epub 2012 Apr 12.

本文引用的文献

1
A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression.
Mol Cell Biol. 2009 Jun;29(12):3255-65. doi: 10.1128/MCB.01741-08. Epub 2009 Apr 6.
3
Structural origins for the product specificity of SET domain protein methyltransferases.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20659-64. doi: 10.1073/pnas.0806712105. Epub 2008 Dec 16.
4
Histone H3 tail clipping regulates gene expression.
Nat Struct Mol Biol. 2009 Jan;16(1):17-22. doi: 10.1038/nsmb.1534. Epub 2008 Dec 14.
6
8
Dissection of coactivator requirement at RNR3 reveals unexpected contributions from TFIID and SAGA.
J Biol Chem. 2008 Oct 10;283(41):27360-27368. doi: 10.1074/jbc.M803831200. Epub 2008 Aug 5.
9
A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation.
Nat Struct Mol Biol. 2008 Aug;15(8):881-8. doi: 10.1038/nsmb.1454. Epub 2008 Jul 11.
10
Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36.
Mol Cell Biol. 2008 Aug;28(16):4915-26. doi: 10.1128/MCB.00001-08. Epub 2008 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验