Suppr超能文献

18F-4V 用于 PET-CT 成像检测动脉粥样硬化中 VCAM-1 的表达。

18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis.

机构信息

Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02124, USA.

出版信息

JACC Cardiovasc Imaging. 2009 Oct;2(10):1213-22. doi: 10.1016/j.jcmg.2009.04.016.

Abstract

OBJECTIVES

The aim of this study was to iteratively develop and validate an (18)F-labeled small vascular cell adhesion molecule (VCAM)-1 affinity ligand and demonstrate the feasibility of imaging VCAM-1 expression by positron emission tomography-computed tomography (PET-CT) in murine atherosclerotic arteries.

BACKGROUND

Hybrid PET-CT imaging allows simultaneous assessment of atherosclerotic lesion morphology (CT) and may facilitate early risk assessment in individual patients. The early induction, confinement of expression to atherosclerotic lesions, and accessible position in proximity to the blood pool render the adhesion molecule VCAM-1 an attractive imaging biomarker for inflamed atheroma prone to complication.

METHODS

A cyclic, a linear, and an oligomer affinity peptide, internalized into endothelial cells by VCAM-1-mediated binding, were initially derivatized with DOTA to determine their binding profiles and pharmacokinetics. The lead compound was then (18)F-labeled and tested in atherosclerotic apoE(-/-) mice receiving a high-cholesterol diet as well as wild type murine models of myocardial infarction and heart transplant rejection.

RESULTS

The tetrameric peptide had the highest affinity and specificity for VCAM-1 (97% inhibition with soluble VCAM-1 in vitro). In vivo PET-CT imaging using (18)F-4V showed 0.31 +/- 0.02 SUV in murine atheroma (ex vivo %IDGT 5.9 +/- 1.5). (18)F-4V uptake colocalized with atherosclerotic plaques on Oil Red O staining and correlated to mRNA levels of VCAM-1 measured by quantitative reverse transcription polymerase chain reaction (R = 0.79, p = 0.03). Atherosclerotic mice receiving an atorvastatin-enriched diet had significantly lower lesional uptake (p < 0.05). Furthermore, (18)F-4V imaging in myocardial ischemia after coronary ligation and in transplanted cardiac allografts undergoing rejection showed high in vivo PET signal in inflamed myocardium and good correlation with ex vivo measurement of VCAM-1 mRNA by quantitative polymerase chain reaction.

CONCLUSIONS

(18)F-4V allows noninvasive PET-CT imaging of VCAM-1 in inflammatory atherosclerosis, has the dynamic range to quantify treatment effects, and correlates with inflammatory gene expression.

摘要

目的

本研究旨在逐步开发和验证一种(18)F 标记的小分子血管细胞黏附分子(VCAM-1)亲和配体,并通过正电子发射断层扫描-计算机断层扫描(PET-CT)证明在小鼠动脉粥样硬化血管中成像 VCAM-1 表达的可行性。

背景

混合 PET-CT 成像可同时评估动脉粥样硬化病变形态(CT),并可能有助于个体患者的早期风险评估。黏附分子 VCAM-1 的早期诱导、局限于动脉粥样硬化病变的表达以及靠近血池的可接近位置,使其成为易发生并发症的炎症动脉粥样硬化的有吸引力的成像生物标志物。

方法

最初用 DOTA 衍生出通过 VCAM-1 介导的结合进入内皮细胞的环状、线性和低聚亲和肽,以确定它们的结合谱和药代动力学。然后将先导化合物(18)F 标记并在接受高胆固醇饮食的动脉粥样硬化 apoE(-/-)小鼠以及心肌梗死和心脏移植排斥的野生型小鼠模型中进行测试。

结果

四聚体肽对 VCAM-1 具有最高的亲和力和特异性(体外 97%抑制可溶性 VCAM-1)。使用(18)F-4V 的体内 PET-CT 成像显示在小鼠动脉粥样硬化中为 0.31 +/- 0.02 SUV(离体 %IDGT 为 5.9 +/- 1.5)。(18)F-4V 摄取与油红 O 染色的动脉粥样硬化斑块共定位,并与定量逆转录聚合酶链反应测量的 VCAM-1 mRNA 水平相关(R = 0.79,p = 0.03)。接受富含阿托伐他汀饮食的动脉粥样硬化小鼠的病变摄取显著降低(p < 0.05)。此外,在冠状动脉结扎后的心肌缺血和排斥的移植心脏同种异体移植物中,(18)F-4V 成像显示在炎症性心肌中有高的体内 PET 信号,并与定量聚合酶链反应测量的 VCAM-1 mRNA 的体外测量具有良好的相关性。

结论

(18)F-4V 可实现炎症性动脉粥样硬化中 VCAM-1 的非侵入性 PET-CT 成像,具有定量治疗效果的动态范围,并与炎症基因表达相关。

相似文献

1
18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis.
JACC Cardiovasc Imaging. 2009 Oct;2(10):1213-22. doi: 10.1016/j.jcmg.2009.04.016.
2
Targeting of vascular cell adhesion molecule-1 by 18F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques.
Eur Heart J Cardiovasc Imaging. 2016 Sep;17(9):1001-8. doi: 10.1093/ehjci/jev346. Epub 2016 Jan 22.
4
Imaging inflammation in atherosclerosis another step forward.
JACC Cardiovasc Imaging. 2009 Oct;2(10):1223-5. doi: 10.1016/j.jcmg.2009.06.010.
5
Monitoring plaque inflammation in atherosclerotic rabbits with an iron oxide (P904) and (18)F-FDG using a combined PET/MR scanner.
Atherosclerosis. 2013 Jun;228(2):339-45. doi: 10.1016/j.atherosclerosis.2013.03.019. Epub 2013 Mar 26.
6
99mTc-cAbVCAM1-5 imaging is a sensitive and reproducible tool for the detection of inflamed atherosclerotic lesions in mice.
J Nucl Med. 2014 Oct;55(10):1678-84. doi: 10.2967/jnumed.114.143792. Epub 2014 Aug 25.
7
FDG-PET can distinguish inflamed from non-inflamed plaque in an animal model of atherosclerosis.
Int J Cardiovasc Imaging. 2010 Jan;26(1):41-8. doi: 10.1007/s10554-009-9506-6. Epub 2009 Sep 22.
9
MDOC and atorvastatin have potential antiinflammatory effects in vascular endothelium of apoE-/- mouse model of atherosclerosis.
Life Sci. 2006 Mar 20;78(17):1983-9. doi: 10.1016/j.lfs.2005.08.041. Epub 2005 Nov 21.
10
Near-infrared fluorescence imaging of murine atherosclerosis using an oxidized low density lipoprotein-targeted fluorochrome.
Int J Cardiovasc Imaging. 2014 Jan;30(1):221-31. doi: 10.1007/s10554-013-0320-9. Epub 2013 Oct 30.

引用本文的文献

1
Advances in Clinical Imaging of Vascular Inflammation: A State-of-the-Art Review.
JACC Basic Transl Sci. 2023 Dec 13;9(5):710-732. doi: 10.1016/j.jacbts.2023.10.007. eCollection 2024 May.
2
Uncovering atherosclerotic cardiovascular disease by PET imaging.
Nat Rev Cardiol. 2024 Sep;21(9):632-651. doi: 10.1038/s41569-024-01009-x. Epub 2024 Apr 4.
5
Emerging Nuclear Medicine Imaging of Atherosclerotic Plaque Formation.
J Imaging. 2022 Sep 27;8(10):261. doi: 10.3390/jimaging8100261.
6
Unravelling the role of macrophages in cardiovascular inflammation through imaging: a state-of-the-art review.
Eur Heart J Cardiovasc Imaging. 2022 Nov 17;23(12):e504-e525. doi: 10.1093/ehjci/jeac167.
7
Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica.
Front Med (Lausanne). 2022 Jun 6;9:902155. doi: 10.3389/fmed.2022.902155. eCollection 2022.
8
Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies.
J Tissue Eng. 2022 Mar 24;13:20417314221088509. doi: 10.1177/20417314221088509. eCollection 2022 Jan-Dec.
9
The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis.
Int J Mol Sci. 2021 Dec 31;23(1):474. doi: 10.3390/ijms23010474.
10
Positron emission tomography in multiple sclerosis - straight to the target.
Nat Rev Neurol. 2021 Nov;17(11):663-675. doi: 10.1038/s41582-021-00537-1. Epub 2021 Sep 20.

本文引用的文献

3
Detection of neovessels in atherosclerotic plaques of rabbits using dynamic contrast enhanced MRI and 18F-FDG PET.
Arterioscler Thromb Vasc Biol. 2008 Jul;28(7):1311-7. doi: 10.1161/ATVBAHA.108.166173. Epub 2008 May 8.
5
Leukocyte integrin Mac-1 promotes acute cardiac allograft rejection.
Circulation. 2008 Apr 15;117(15):1997-2008. doi: 10.1161/CIRCULATIONAHA.107.724310. Epub 2008 Mar 31.
6
Imaging of atherosclerotic cardiovascular disease.
Nature. 2008 Feb 21;451(7181):953-7. doi: 10.1038/nature06803.
8
Accelerated image reconstruction using ordered subsets of projection data.
IEEE Trans Med Imaging. 1994;13(4):601-9. doi: 10.1109/42.363108.
9
Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis.
Circulation. 2008 Jan 22;117(3):379-87. doi: 10.1161/CIRCULATIONAHA.107.741181. Epub 2007 Dec 24.
10
Molecular imaging by cardiovascular MR.
J Cardiovasc Magn Reson. 2007;9(6):827-43. doi: 10.1080/10976640701693766.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验