Suppr超能文献

具有连续时间信息缺失的纵向过程的变系数模型。

Varying-coefficient models for longitudinal processes with continuous-time informative dropout.

机构信息

MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge CB2 0SR, UK.

出版信息

Biostatistics. 2010 Jan;11(1):93-110. doi: 10.1093/biostatistics/kxp040. Epub 2009 Oct 15.

Abstract

Dropout is a common occurrence in longitudinal studies. Building upon the pattern-mixture modeling approach within the Bayesian paradigm, we propose a general framework of varying-coefficient models for longitudinal data with informative dropout, where measurement times can be irregular and dropout can occur at any point in continuous time (not just at observation times) together with administrative censoring. Specifically, we assume that the longitudinal outcome process depends on the dropout process through its model parameters. The unconditional distribution of the repeated measures is a mixture over the dropout (administrative censoring) time distribution, and the continuous dropout time distribution with administrative censoring is left completely unspecified. We use Markov chain Monte Carlo to sample from the posterior distribution of the repeated measures given the dropout (administrative censoring) times; Bayesian bootstrapping on the observed dropout (administrative censoring) times is carried out to obtain marginal covariate effects. We illustrate the proposed framework using data from a longitudinal study of depression in HIV-infected women; the strategy for sensitivity analysis on unverifiable assumption is also demonstrated.

摘要

辍学是纵向研究中常见的现象。基于贝叶斯范式中的模式混合建模方法,我们提出了一个具有信息辍学的纵向数据变系数模型的一般框架,其中测量时间可以不规则,辍学可以在连续时间的任何时间点(不仅在观察时间)发生,同时伴有行政删失。具体来说,我们假设纵向结果过程通过其模型参数与辍学过程相关。重复测量的无条件分布是在辍学(行政删失)时间分布上的混合,而带有行政删失的连续辍学时间分布则完全没有指定。我们使用马尔可夫链蒙特卡罗方法从给定辍学(行政删失)时间的重复测量的后验分布中抽样;对观察到的辍学(行政删失)时间进行贝叶斯自举以获得边际协变量效应。我们使用 HIV 感染妇女抑郁纵向研究的数据来说明所提出的框架;还展示了对不可验证假设进行敏感性分析的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2810/2800163/4fcce684c279/biostskxp040f01_lw.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验