Ontario Cancer Institute/Campbell Family Institute for Cancer Research, Toronto, ON, Canada.
Dis Model Mech. 2009 Nov-Dec;2(11-12):620-6. doi: 10.1242/dmm.004069. Epub 2009 Oct 19.
Autosomal dominant mutations in telomere-associated factors elicit a disease known as dyskeratosis congenita (DKC), and patients suffer proliferative abnormalities associated with telomere erosion. Mice that are heterozygous for telomerase genes (Tert or Terc, hereafter referred to as mTert and mTerc) are useful models of telomerase haploinsufficiency, but do not strictly mimic DKC. In strains with long telomeres (>60 kbp), animals that are heterozygous for mTert undergo telomere erosion for nine generations and remain phenotypically normal. In an mTerc heterozygous strain with short telomeres (<15 kbp), early mortality arises after five to six generations, but dyskeratosis occurs only upon the further loss of mPot1b. We show that prolonged mTert heterozygosity (for greater than ten generations) did not elicit disease, even upon heterozygote interbreeding, and that telomeres reset to wild-type lengths. This lengthening did not occur in nullizygotes, and short telomeres inherited from mTert null parents were rescued only in heterozygous progeny. In the bone marrow, nullizygotes remained competent for radioprotection for three generations. Thus, gradual telomere erosion in the presence of telomerase may enable subsequent telomere extension, similar to that described in budding yeast. We speculate whether such adaptation occurs in normal human cells (or whether it could be induced in DKC-derived cells), and whether it might mitigate the impact of telomerase inhibition upon stem cells during cancer therapy.
常染色体显性突变导致端粒相关因子异常,引发先天性角化不良(dyskeratosis congenita,DKC),患者表现为与端粒侵蚀相关的增殖异常。端粒酶基因(Tert 或 Terc,以下简称 mTert 和 mTerc)杂合的小鼠是端粒酶功能不全的有用模型,但不能严格模拟 DKC。在端粒较长(>60 kbp)的品系中,mTert 杂合的动物经过九代端粒侵蚀后仍保持表型正常。在端粒较短(<15 kbp)的 mTert 杂合品系中,经过五到六代后会出现早期死亡,但只有在进一步丢失 mPot1b 时才会出现角化不良。我们发现,mTert 杂合状态延长(>10 代)不会引发疾病,即使杂合子之间进行杂交也是如此,并且端粒会重置为野生型长度。这种延长不会发生在纯合子中,并且仅在杂合子后代中才能挽救来自 mTert 纯合子父母的短端粒。在骨髓中,纯合子仍能保持三代的辐射保护能力。因此,在端粒酶存在的情况下,端粒逐渐侵蚀可能会导致随后的端粒延长,类似于在 budding 酵母中描述的情况。我们推测这种适应是否发生在正常人类细胞中(或者是否可以在 DKC 衍生的细胞中诱导这种适应),以及它是否可以减轻癌症治疗过程中端粒酶抑制对干细胞的影响。