DiSCAFF Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, University of Piemonte Orientale A. Avogadro, Novara, Italy.
FEBS J. 2009 Nov;276(22):6615-23. doi: 10.1111/j.1742-4658.2009.07372.x. Epub 2009 Oct 16.
The enzyme alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD) is a zinc-dependent amidohydrolase that participates in picolinic acid (PA), quinolinic acid (QA) and NAD homeostasis. Indeed, the enzyme stands at a branch point of the tryptophan to NAD pathway, and determines the final fate of the amino acid, i.e. transformation into PA, complete oxidation through the citric acid cycle, or conversion into NAD through QA synthesis. Both PA and QA are key players in a number of physiological and pathological conditions, mainly affecting the central nervous system. As their relative concentrations must be tightly controlled, modulation of ACMSD activity appears to be a promising prospect for the treatment of neurological disorders, including cerebral malaria. Here we report the 2.0 A resolution crystal structure of human ACMSD in complex with the glycolytic intermediate 1,3-dihydroxyacetonephosphate (DHAP), refined to an R-factor of 0.19. DHAP, which we discovered to be a potent enzyme inhibitor, resides in the ligand binding pocket with its phosphate moiety contacting the catalytically essential zinc ion through mediation of a solvent molecule. Arg47, Asp291 and Trp191 appear to be the key residues for DHAP recognition in human ACMSD. Ligand binding induces a significant conformational change affecting a strictly conserved Trp-Met couple, and we propose that these residues are involved in controlling ligand admission into ACMSD. Our data may be used for the design of inhibitors with potential medical interest, and suggest a regulatory link between de novo NAD biosynthesis and glycolysis.
α-氨基-β-羧基戊烯酸-ε-亚胺半醛脱羧酶(ACMSD)是一种锌依赖性氨水解酶,参与吡啶酸(PA)、喹啉酸(QA)和 NAD 稳态。事实上,该酶位于色氨酸到 NAD 途径的分支点,决定了氨基酸的最终命运,即转化为 PA、通过柠檬酸循环完全氧化,或通过 QA 合成转化为 NAD。PA 和 QA 都是许多生理和病理条件的关键参与者,主要影响中枢神经系统。由于它们的相对浓度必须严格控制,因此调节 ACMSD 活性似乎是治疗神经紊乱的一个有前途的前景,包括脑疟疾。在这里,我们报告了人 ACMSD 与糖酵解中间产物 1,3-二羟基丙酮磷酸(DHAP)复合物的 2.0 A 分辨率晶体结构,其 R 因子为 0.19。DHAP 是一种有效的酶抑制剂,我们发现它位于配体结合口袋中,其磷酸部分通过介由溶剂分子与催化必需的锌离子接触。Arg47、Asp291 和 Trp191 似乎是人类 ACMSD 中 DHAP 识别的关键残基。配体结合诱导了显著的构象变化,影响了严格保守的色氨酸-甲硫氨酸对,我们提出这些残基参与控制 ACMSD 中的配体进入。我们的数据可用于设计具有潜在医学兴趣的抑制剂,并提示从头合成 NAD 和糖酵解之间存在调节联系。