Suppr超能文献

在鸡蛋内应用抗miR表明miR-196通过调控Hox基因在鸡胚轴骨骼模式形成中发挥作用。

In ovo application of antagomiRs indicates a role for miR-196 in patterning the chick axial skeleton through Hox gene regulation.

作者信息

McGlinn Edwina, Yekta Soraya, Mansfield Jennifer H, Soutschek Jürgen, Bartel David P, Tabin Clifford J

机构信息

Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18610-5. doi: 10.1073/pnas.0910374106. Epub 2009 Oct 21.

Abstract

Patterning of the vertebrate axial skeleton requires precise spatial and temporal control of Hox gene expression during embryonic development. MicroRNAs (miRNAs) are recently described modulators of gene activity, and members of the miR-196 and miR-10 families have been shown to target several Hox genes in vivo. Testing miRNA function in mice is complicated by potential redundancy between family members. To circumvent this, we have developed protocols for introducing modified antisense oligonucleotides (antagomiRs) in ovo during chick development. Using this approach, we identify a layer of regulatory control provided by the miR-196 family in defining the boundary of Hox gene expression along the anterior-posterior (A-P) embryonic axis. Following knockdown of miR-196, we observe a homeotic transformation of the last cervical vertebrae toward a thoracic identity. This phenotypic alteration is, in part, due to an anterior expansion of Hoxb8 gene expression and consolidates the in vivo relevance of post-transcriptional Hox gene regulation provided by miRNAs in the complex hierarchies governing axial pattering.

摘要

脊椎动物轴骨骼的模式形成需要在胚胎发育过程中对Hox基因表达进行精确的空间和时间控制。微小RNA(miRNA)是最近被描述的基因活性调节剂,并且已证明miR-196和miR-10家族的成员在体内靶向多个Hox基因。由于家族成员之间存在潜在的冗余性,在小鼠中测试miRNA功能变得复杂。为了规避这一问题,我们开发了在鸡胚发育过程中在卵内引入修饰的反义寡核苷酸(抗miR)的方案。使用这种方法,我们确定了miR-196家族在沿前后(A-P)胚胎轴定义Hox基因表达边界方面提供的一层调控控制。在敲低miR-196后,我们观察到最后一个颈椎向胸椎身份的同源异型转化。这种表型改变部分是由于Hoxb8基因表达的向前扩展,并巩固了miRNA在控制轴模式形成的复杂层次结构中提供的转录后Hox基因调控在体内的相关性。

相似文献

1
In ovo application of antagomiRs indicates a role for miR-196 in patterning the chick axial skeleton through Hox gene regulation.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18610-5. doi: 10.1073/pnas.0910374106. Epub 2009 Oct 21.
2
Hoxa-5 acts in segmented somites to regulate cervical vertebral morphology.
Mech Dev. 2013 Apr-May;130(4-5):226-40. doi: 10.1016/j.mod.2013.02.002. Epub 2013 Feb 24.
4
Hox genes specify vertebral types in the presomitic mesoderm.
Genes Dev. 2005 Sep 15;19(18):2116-21. doi: 10.1101/gad.338705.
5
Hox genes and morphological identity: axial versus lateral patterning in the vertebrate mesoderm.
Development. 2000 Oct;127(19):4265-75. doi: 10.1242/dev.127.19.4265.
6
Hox patterning of the vertebrate rib cage.
Development. 2007 Aug;134(16):2981-9. doi: 10.1242/dev.007567. Epub 2007 Jul 11.
7
miR-196 regulates axial patterning and pectoral appendage initiation.
Dev Biol. 2011 Sep 15;357(2):463-77. doi: 10.1016/j.ydbio.2011.07.014. Epub 2011 Jul 20.
8
Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes.
Development. 2001 May;128(10):1911-21. doi: 10.1242/dev.128.10.1911.
9
Hox patterning of the vertebrate axial skeleton.
Dev Dyn. 2007 Sep;236(9):2454-63. doi: 10.1002/dvdy.21286.

引用本文的文献

1
Good things come in small packages: The discovery of small RNAs in the smallest animal model.
Biomed J. 2025 Feb;48(1):100832. doi: 10.1016/j.bj.2025.100832. Epub 2025 Feb 12.
3
Maternal SMCHD1 regulates Hox gene expression and patterning in the mouse embryo.
Nat Commun. 2022 Jul 25;13(1):4295. doi: 10.1038/s41467-022-32057-x.
4
Nonmodular oscillator and switch based on RNA decay drive regeneration of multimodal gene expression.
Nucleic Acids Res. 2022 Apr 22;50(7):3693-3708. doi: 10.1093/nar/gkac217.
5
Molecular features and vulnerabilities of recurrent chordomas.
J Exp Clin Cancer Res. 2021 Jul 30;40(1):244. doi: 10.1186/s13046-021-02037-y.
6
Constructing cancer patient-specific and group-specific gene networks with multi-omics data.
BMC Med Genomics. 2020 Aug 27;13(Suppl 6):81. doi: 10.1186/s12920-020-00736-7.
7
MiRNA Profiling in Pectoral Muscle Throughout Pre- to Post-Natal Stages of Chicken Development.
Front Genet. 2020 Jun 23;11:570. doi: 10.3389/fgene.2020.00570. eCollection 2020.
8
miR-199 family contributes to regulation of sonic hedgehog expression during craniofacial development.
Dev Dyn. 2020 Sep;249(9):1062-1076. doi: 10.1002/dvdy.191. Epub 2020 Aug 4.
9
miR-196B-5P and miR-200B-3P Are Differentially Expressed in Medulloblastomas of Adults and Children.
Diagnostics (Basel). 2020 Apr 29;10(5):265. doi: 10.3390/diagnostics10050265.
10
miR-196 acts as a tumor suppressor in osteosarcoma by targeting HOXA9.
Int J Clin Exp Pathol. 2018 Sep 1;11(9):4579-4584. eCollection 2018.

本文引用的文献

2
A microRNA imparts robustness against environmental fluctuation during development.
Cell. 2009 Apr 17;137(2):273-82. doi: 10.1016/j.cell.2009.01.058.
3
High throughput sequencing of microRNAs in chicken somites.
FEBS Lett. 2009 May 6;583(9):1422-6. doi: 10.1016/j.febslet.2009.03.048. Epub 2009 Mar 27.
4
MicroRNAs: target recognition and regulatory functions.
Cell. 2009 Jan 23;136(2):215-33. doi: 10.1016/j.cell.2009.01.002.
5
Potent inhibition of microRNA in vivo without degradation.
Nucleic Acids Res. 2009 Jan;37(1):70-7. doi: 10.1093/nar/gkn904. Epub 2008 Nov 16.
6
MicroRNAs in the Hox network: an apparent link to posterior prevalence.
Nat Rev Genet. 2008 Oct;9(10):789-96. doi: 10.1038/nrg2400.
7
A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach.
Genome Res. 2008 Jun;18(6):957-64. doi: 10.1101/gr.074740.107. Epub 2008 May 9.
9
MicroRNAs in the Drosophila bithorax complex.
Genes Dev. 2008 Jan 1;22(1):14-9. doi: 10.1101/gad.1614208.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验