Suppr超能文献

胰岛素“不可折叠”结构:尽管具有天然活性,但折叠效率受损。

Crystal structure of a "nonfoldable" insulin: impaired folding efficiency despite native activity.

机构信息

Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.

出版信息

J Biol Chem. 2009 Dec 11;284(50):35259-72. doi: 10.1074/jbc.M109.046888. Epub 2009 Oct 22.

Abstract

Protein evolution is constrained by folding efficiency ("foldability") and the implicit threat of toxic misfolding. A model is provided by proinsulin, whose misfolding is associated with beta-cell dysfunction and diabetes mellitus. An insulin analogue containing a subtle core substitution (Leu(A16) --> Val) is biologically active, and its crystal structure recapitulates that of the wild-type protein. As a seeming paradox, however, Val(A16) blocks both insulin chain combination and the in vitro refolding of proinsulin. Disulfide pairing in mammalian cell culture is likewise inefficient, leading to misfolding, endoplasmic reticular stress, and proteosome-mediated degradation. Val(A16) destabilizes the native state and so presumably perturbs a partial fold that directs initial disulfide pairing. Substitutions elsewhere in the core similarly destabilize the native state but, unlike Val(A16), preserve folding efficiency. We propose that Leu(A16) stabilizes nonlocal interactions between nascent alpha-helices in the A- and B-domains to facilitate initial pairing of Cys(A20) and Cys(B19), thus surmounting their wide separation in sequence. Although Val(A16) is likely to destabilize this proto-core, its structural effects are mitigated once folding is achieved. Classical studies of insulin chain combination in vitro have illuminated the impact of off-pathway reactions on the efficiency of native disulfide pairing. The capability of a polypeptide sequence to fold within the endoplasmic reticulum may likewise be influenced by kinetic or thermodynamic partitioning among on- and off-pathway disulfide intermediates. The properties of [Val(A16)]insulin and [Val(A16)]proinsulin demonstrate that essential contributions of conserved residues to folding may be inapparent once the native state is achieved.

摘要

蛋白质的进化受到折叠效率(“可折叠性”)和潜在的毒性错误折叠威胁的限制。前胰岛素提供了一个模型,其错误折叠与β细胞功能障碍和糖尿病有关。含有微妙核心取代(亮氨酸(A16)→缬氨酸)的胰岛素类似物具有生物活性,其晶体结构再现了野生型蛋白质的结构。然而,作为一个似乎矛盾的现象,Val(A16)阻止了胰岛素链的组合和前胰岛素的体外重折叠。哺乳动物细胞培养中的二硫键配对同样效率低下,导致错误折叠、内质网应激和蛋白酶体介导的降解。Val(A16)使天然状态不稳定,因此可能扰乱了指导初始二硫键配对的部分折叠。核心中其他位置的取代同样会使天然状态不稳定,但与 Val(A16)不同的是,它们保持了折叠效率。我们提出 Leu(A16)稳定新生α-螺旋在 A-和 B-结构域之间的非局部相互作用,以促进 Cys(A20)和 Cys(B19)的初始配对,从而克服它们在序列上的广泛分离。尽管 Val(A16)可能使这个原核心不稳定,但一旦折叠完成,其结构影响就会减轻。体外胰岛素链组合的经典研究阐明了偏离途径反应对天然二硫键配对效率的影响。多肽序列在内质网中折叠的能力也可能受到沿途径和偏离途径二硫键中间体之间的动力学或热力学分配的影响。[Val(A16)]胰岛素和[Val(A16)]前胰岛素的特性表明,一旦达到天然状态,保守残基对折叠的重要贡献可能不明显。

相似文献

1
Crystal structure of a "nonfoldable" insulin: impaired folding efficiency despite native activity.
J Biol Chem. 2009 Dec 11;284(50):35259-72. doi: 10.1074/jbc.M109.046888. Epub 2009 Oct 22.
2
Peptide Model of the Mutant Proinsulin Syndrome. II. Nascent Structure and Biological Implications.
Front Endocrinol (Lausanne). 2022 Mar 1;13:821091. doi: 10.3389/fendo.2022.821091. eCollection 2022.
3
Evolution of insulin at the edge of foldability and its medical implications.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29618-29628. doi: 10.1073/pnas.2010908117. Epub 2020 Nov 5.
5
A protein caught in a kinetic trap: structures and stabilities of insulin disulfide isomers.
Biochemistry. 2002 Dec 17;41(50):14700-15. doi: 10.1021/bi0202981.
6
Peptide Model of the Mutant Proinsulin Syndrome. I. Design and Clinical Correlation.
Front Endocrinol (Lausanne). 2022 Mar 1;13:821069. doi: 10.3389/fendo.2022.821069. eCollection 2022.
7
The folding nucleus of the insulin superfamily: a flexible peptide model foreshadows the native state.
J Biol Chem. 2006 Sep 22;281(38):28131-42. doi: 10.1074/jbc.M602616200. Epub 2006 Jul 24.
8
Disulfide Mispairing During Proinsulin Folding in the Endoplasmic Reticulum.
Diabetes. 2016 Apr;65(4):1050-60. doi: 10.2337/db15-1345. Epub 2016 Jan 28.
9
Peptide models of four possible insulin folding intermediates with two disulfides.
Protein Sci. 2003 Nov;12(11):2412-9. doi: 10.1110/ps.0389303.
10
Chemical synthesis of insulin analogs through a novel precursor.
ACS Chem Biol. 2014 Mar 21;9(3):683-91. doi: 10.1021/cb400792s. Epub 2014 Jan 2.

引用本文的文献

2
Effect of silibinin and trans-chalcone in an Alzheimer's disease-like model generated by insulin amyloids.
Braz J Med Biol Res. 2023 Feb 27;56:e12443. doi: 10.1590/1414-431X2023e12443. eCollection 2023.
4
Peptide Model of the Mutant Proinsulin Syndrome. II. Nascent Structure and Biological Implications.
Front Endocrinol (Lausanne). 2022 Mar 1;13:821091. doi: 10.3389/fendo.2022.821091. eCollection 2022.
5
Diabetes-Associated Mutations in Proinsulin Provide a "Molecular Rheostat" of Nascent Foldability.
Curr Diab Rep. 2022 Feb;22(2):85-94. doi: 10.1007/s11892-022-01447-2. Epub 2022 Feb 4.
6
Structural Lessons From the Mutant Proinsulin Syndrome.
Front Endocrinol (Lausanne). 2021 Sep 30;12:754693. doi: 10.3389/fendo.2021.754693. eCollection 2021.
7
Predisposition to Proinsulin Misfolding as a Genetic Risk to Diet-Induced Diabetes.
Diabetes. 2021 Nov;70(11):2580-2594. doi: 10.2337/db21-0422. Epub 2021 Aug 30.
8
Distinct states of proinsulin misfolding in MIDY.
Cell Mol Life Sci. 2021 Aug;78(16):6017-6031. doi: 10.1007/s00018-021-03871-1. Epub 2021 Jul 10.
9
Evolution of insulin at the edge of foldability and its medical implications.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29618-29628. doi: 10.1073/pnas.2010908117. Epub 2020 Nov 5.
10
Biosynthesis, structure, and folding of the insulin precursor protein.
Diabetes Obes Metab. 2018 Sep;20 Suppl 2(Suppl 2):28-50. doi: 10.1111/dom.13378.

本文引用的文献

1
Proinsulin and the genetics of diabetes mellitus.
J Biol Chem. 2009 Jul 17;284(29):19159-63. doi: 10.1074/jbc.R109.009936. Epub 2009 Apr 24.
2
Enhancing the activity of a protein by stereospecific unfolding: conformational life cycle of insulin and its evolutionary origins.
J Biol Chem. 2009 May 22;284(21):14586-96. doi: 10.1074/jbc.M900085200. Epub 2009 Mar 25.
5
Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes.
Diabetes. 2008 Apr;57(4):1131-5. doi: 10.2337/db07-1467. Epub 2008 Jan 11.
7
Contribution of the conserved A16Leu to insulin foldability.
Protein J. 2008 Apr;27(3):192-6. doi: 10.1007/s10930-007-9124-x.
8
Proinsulin maturation, misfolding, and proteotoxicity.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15841-6. doi: 10.1073/pnas.0702697104. Epub 2007 Sep 26.
9
Insulin gene mutations as a cause of permanent neonatal diabetes.
Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15040-4. doi: 10.1073/pnas.0707291104. Epub 2007 Sep 12.
10
ER stress and diseases.
FEBS J. 2007 Feb;274(3):630-58. doi: 10.1111/j.1742-4658.2007.05639.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验