Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
J Biol Chem. 2009 Dec 11;284(50):35259-72. doi: 10.1074/jbc.M109.046888. Epub 2009 Oct 22.
Protein evolution is constrained by folding efficiency ("foldability") and the implicit threat of toxic misfolding. A model is provided by proinsulin, whose misfolding is associated with beta-cell dysfunction and diabetes mellitus. An insulin analogue containing a subtle core substitution (Leu(A16) --> Val) is biologically active, and its crystal structure recapitulates that of the wild-type protein. As a seeming paradox, however, Val(A16) blocks both insulin chain combination and the in vitro refolding of proinsulin. Disulfide pairing in mammalian cell culture is likewise inefficient, leading to misfolding, endoplasmic reticular stress, and proteosome-mediated degradation. Val(A16) destabilizes the native state and so presumably perturbs a partial fold that directs initial disulfide pairing. Substitutions elsewhere in the core similarly destabilize the native state but, unlike Val(A16), preserve folding efficiency. We propose that Leu(A16) stabilizes nonlocal interactions between nascent alpha-helices in the A- and B-domains to facilitate initial pairing of Cys(A20) and Cys(B19), thus surmounting their wide separation in sequence. Although Val(A16) is likely to destabilize this proto-core, its structural effects are mitigated once folding is achieved. Classical studies of insulin chain combination in vitro have illuminated the impact of off-pathway reactions on the efficiency of native disulfide pairing. The capability of a polypeptide sequence to fold within the endoplasmic reticulum may likewise be influenced by kinetic or thermodynamic partitioning among on- and off-pathway disulfide intermediates. The properties of [Val(A16)]insulin and [Val(A16)]proinsulin demonstrate that essential contributions of conserved residues to folding may be inapparent once the native state is achieved.
蛋白质的进化受到折叠效率(“可折叠性”)和潜在的毒性错误折叠威胁的限制。前胰岛素提供了一个模型,其错误折叠与β细胞功能障碍和糖尿病有关。含有微妙核心取代(亮氨酸(A16)→缬氨酸)的胰岛素类似物具有生物活性,其晶体结构再现了野生型蛋白质的结构。然而,作为一个似乎矛盾的现象,Val(A16)阻止了胰岛素链的组合和前胰岛素的体外重折叠。哺乳动物细胞培养中的二硫键配对同样效率低下,导致错误折叠、内质网应激和蛋白酶体介导的降解。Val(A16)使天然状态不稳定,因此可能扰乱了指导初始二硫键配对的部分折叠。核心中其他位置的取代同样会使天然状态不稳定,但与 Val(A16)不同的是,它们保持了折叠效率。我们提出 Leu(A16)稳定新生α-螺旋在 A-和 B-结构域之间的非局部相互作用,以促进 Cys(A20)和 Cys(B19)的初始配对,从而克服它们在序列上的广泛分离。尽管 Val(A16)可能使这个原核心不稳定,但一旦折叠完成,其结构影响就会减轻。体外胰岛素链组合的经典研究阐明了偏离途径反应对天然二硫键配对效率的影响。多肽序列在内质网中折叠的能力也可能受到沿途径和偏离途径二硫键中间体之间的动力学或热力学分配的影响。[Val(A16)]胰岛素和[Val(A16)]前胰岛素的特性表明,一旦达到天然状态,保守残基对折叠的重要贡献可能不明显。