Materials Science & Engineering, University of California at San Diego, La Jolla, CA 92093-0411, USA.
Acta Biomater. 2010 Apr;6(4):1671-7. doi: 10.1016/j.actbio.2009.11.015. Epub 2009 Nov 16.
MP35N (Co-Ni-Cr-Mo alloy) is an important stent implant material for which many aspects, that include nanostructured surfaces, are yet to be understood. The present study provides the first creation of radially emanating metallic nanopillar structures on the surface of MP35N stent alloy wires; a novel textured surface structuring derived via controlled RF processing technique. The goal of this study was to characterize the newly found structures, identify evolution stages of nanopillar formations, as well as optimize RF process parameters for controlled surface texturing technique for stent wire materials. The exposure of a stent alloy wire, 250 microm diameter Co-Ni-Cr-Mo alloy (MP35N), to parameter-controlled RF environment resulted in dense surface nanostructures consisting of high-aspect-ratio dendritic nanopillars/nanowires. Extensive surface characterization and local compositional analyses by Transmission Electron Microscopy (TEM), Energy Dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) show increased values of Mo contents on the outer edges of protruding nanopillars, indicating a possibility of the higher Mo content phase contributing to the differential plasma sputter etching on the MP35N surface and resultant nanowire formation. A comparative investigation on single phase alloy versus multi-phase alloy seems to point to the importance of phase segregation for successful nanowire formation by RF plasma treatment. In addition to MP35N, some specific single phased materials, such as Fe-Ni and Fe-Cr alloys or Pt metal wire, were exposed in same RF plasma conditions and results did not form the complex structures found on MP35N samples. For the purpose of this study, metallic stent wires that have nanostructured surfaces can be considered a "polymer-less" approach to surface modification, The creation and characterization of radially arrayed nanostructured surfaces has been demonstrated on MP35N stent alloy wires using this RF plasma process; where such nanostructured surfaces contribute to design concepts that may enhance endotheliazation of stent materials via surface texturing modification.
MP35N(Co-Ni-Cr-Mo 合金)是一种重要的支架植入材料,其许多方面,包括纳米结构表面,仍有待了解。本研究首次在 MP35N 支架合金丝表面上生成了放射状的金属纳米柱结构;这是一种通过控制射频处理技术获得的新型织构表面结构。本研究的目的是对新发现的结构进行表征,确定纳米柱形成的演化阶段,并优化用于支架丝材料的受控表面织构技术的 RF 工艺参数。将 250 微米直径的 Co-Ni-Cr-Mo 合金(MP35N)支架合金丝暴露于参数受控的射频环境中,导致表面形成由高密度、高纵横比的枝晶纳米柱/纳米线组成的纳米结构。通过透射电子显微镜(TEM)、能量色散 X 射线分析(EDX)和 X 射线光电子能谱(XPS)进行广泛的表面特性和局部成分分析,显示出突出纳米柱外边缘处 Mo 含量增加,这表明较高 Mo 含量的相可能有助于 MP35N 表面的等离子体溅射蚀刻差异,以及由此产生的纳米线形成。对单相合金和多相合金的对比研究似乎表明,对于通过射频等离子体处理成功形成纳米线,相分离的重要性。除了 MP35N 之外,一些特定的单相材料,如 Fe-Ni 和 Fe-Cr 合金或 Pt 金属丝,在相同的射频等离子体条件下进行了暴露,但没有形成在 MP35N 样品上发现的复杂结构。就本研究而言,具有纳米结构表面的金属支架丝可以被认为是一种“无聚合物”的表面改性方法。已经使用这种射频等离子体工艺在 MP35N 支架合金丝上生成和表征了放射状排列的纳米结构表面;这种纳米结构表面有助于通过表面织构改性增强支架材料的内皮化的设计概念。