Quiceno-Manrique A F, Alonso-Hernández J B, Travieso-González C M, Ferrer-Ballester M A, Castellanos-Domínguez G
Control and Digital Signal Processing Group, Universidad Nacional de Colombia, sede Manizales.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5559-62. doi: 10.1109/IEMBS.2009.5333736.
Detection of obstructive sleep apnea can be performed through heart rate variability analysis, since fluctuations of oxygen saturation in blood cause variations in the heart rate. Such variations in heart rate can be assessed by means of time-frequency analysis implemented with time-frequency distributions belonging to Cohen's class. In this work, dynamic features are extracted from time frequency distributions in order to detect obstructive sleep apnea from ECG signals recorded during sleep. Furthermore, it is applied a methodology to measure the relevance of each dynamic feature, before the implementation of k-nn classifier used to recognize the normal and pathologic signals. As a result, the proposed method can be applied as a simple diagnostic tool for OSA with a high accuracy (up to 92.67%) in one-minute intervals.
阻塞性睡眠呼吸暂停的检测可以通过心率变异性分析来进行,因为血液中氧饱和度的波动会导致心率变化。这种心率变化可以通过使用属于科恩类的时频分布进行时频分析来评估。在这项工作中,从时频分布中提取动态特征,以便从睡眠期间记录的心电图信号中检测阻塞性睡眠呼吸暂停。此外,在使用k近邻分类器识别正常和病理信号之前,应用一种方法来测量每个动态特征的相关性。结果,所提出的方法可以作为一种简单的阻塞性睡眠呼吸暂停诊断工具,在一分钟的时间间隔内具有很高的准确率(高达92.67%)。