Suppr超能文献

臭氧与氢氧根离子的反应:基于热动力学和量子化学计算的机理考虑以及 HO4- 在超氧化物歧化中的作用。

The reaction of ozone with the hydroxide ion: mechanistic considerations based on thermokinetic and quantum chemical calculations and the role of HO4- in superoxide dismutation.

机构信息

School of Chemistry, Nuclear Chemistry, The Royal Institute of Technology, 10044 Stockholm, Sweden.

出版信息

Chemistry. 2010 Jan 25;16(4):1372-7. doi: 10.1002/chem.200802539.

Abstract

The reaction of OH(-) with O(3) eventually leads to the formation of OH radicals. In the original mechanistic concept (J. Staehelin, J. Hoigné, Environ. Sci. Technol. 1982, 16, 676-681), it was suggested that the first step occurred by O transfer: OH(-)+O(3)-->HO(2)(-)+O(2) and that OH was generated in the subsequent reaction(s) of HO(2)(-) with O(3) (the peroxone process). This mechanistic concept has now been revised on the basis of thermokinetic and quantum chemical calculations. A one-step O transfer such as that mentioned above would require the release of O(2) in its excited singlet state ((1)O(2), O(2)((1)Delta(g))); this state lies 95.5 kJ mol(-1) above the triplet ground state ((3)O(2), O(2)((3)Sigma(g)(-))). The low experimental rate constant of 70 M(-1) s(-1) is not incompatible with such a reaction. However, according to our calculations, the reaction of OH(-) with O(3) to form an adduct (OH(-)+O(3)-->HO(4)(-); DeltaG=3.5 kJ mol(-1)) is a much better candidate for the rate-determining step as compared with the significantly more endergonic O transfer (DeltaG=26.7 kJ mol(-1)). Hence, we favor this reaction; all the more so as numerous precedents of similar ozone adduct formation are known in the literature. Three potential decay routes of the adduct HO(4)(-) have been probed: HO(4)(-)-->HO(2)(-)+(1)O(2) is spin allowed, but markedly endergonic (DeltaG=23.2 kJ mol(-1)). HO(4)(-)-->HO(2)(-)+(3)O(2) is spin forbidden (DeltaG=-73.3 kJ mol(-1)). The decay into radicals, HO(4)(-)-->HO(2)+O(2)(-), is spin allowed and less endergonic (DeltaG=14.8 kJ mol(-1)) than HO(4)(-)-->HO(2)(-)+(1)O(2). It is thus HO(4)(-)-->HO(2)+O(2)(-) by which HO(4)(-) decays. It is noted that a large contribution of the reverse of this reaction, HO(2)+O(2)(-)-->HO(4)(-), followed by HO(4)(-)-->HO(2)(-)+(3)O(2), now explains why the measured rate of the bimolecular decay of HO(2)* and O(2)(-) into HO(2)(-)+O(2) (k=1 x 10(8) M(-1) s(-1)) is below diffusion controlled. Because k for the process HO(4)(-)-->HO(2)+O(2)(*-) is much larger than k for the reverse of OH(-)+O(3)-->HO(4)(-), the forward reaction OH(-)+O(3)-->HO(4)(-) is practically irreversible.

摘要

OH(-)与 O(3)的反应最终导致 OH 自由基的形成。在最初的机制概念中(J. Staehelin,J. Hoigné,Environ. Sci. Technol. 1982,16,676-681),建议第一步通过 O 转移发生:OH(-)+O(3)-->HO(2)(-)+O(2),OH 是在随后的 HO(2)(-)与 O(3)的反应(过氧单键过程)中生成的。这个机制概念现在已经根据热动力学和量子化学计算进行了修订。如上所述的一步 O 转移需要释放其激发单线态中的 O(2)((1)O(2),O(2)((1)Delta(g)));这种状态位于三重态基态((3)O(2),O(2)((3)Sigma(g)(-)))上方 95.5 kJ mol(-1)。实验中低的速率常数 70 M(-1) s(-1)与这样的反应并不矛盾。然而,根据我们的计算,OH(-)与 O(3)形成加合物(OH(-)+O(3)-->HO(4)(-);DeltaG=3.5 kJ mol(-1))是比明显更吸热的 O 转移(DeltaG=26.7 kJ mol(-1))更适合作为速率决定步骤的候选物。因此,我们倾向于这种反应;尤其是因为在文献中已经知道许多类似的臭氧加合物形成的先例。HO(4)(-)的三种潜在衰变途径已经被探测到:HO(4)(-)-->HO(2)(-)+(1)O(2)是自旋允许的,但明显吸热(DeltaG=23.2 kJ mol(-1))。HO(4)(-)-->HO(2)(-)+(3)O(2)是自旋禁阻的(DeltaG=-73.3 kJ mol(-1))。自由基的衰变,HO(4)(-)-->HO(2)+O(2)(-),是自旋允许的,并且比 HO(4)(-)-->HO(2)(-)+(1)O(2)吸热少(DeltaG=14.8 kJ mol(-1))。因此,HO(4)(-)通过 HO(4)(-)-->HO(2)+O(2)(-)进行衰变。值得注意的是,HO(2)+O(2)(-)-->HO(4)(-)的反向反应的大量贡献,随后是 HO(4)(-)-->HO(2)(-)+(3)O(2),现在解释了为什么测量到的 HO(2)和 O(2)(-)的双分子衰变速率 into HO(2)(-)+O(2)(k=1 x 10(8) M(-1) s(-1))低于扩散控制。因为 k 对于 HO(4)(-)-->HO(2)+O(2)(-)的过程远大于 k 对于 OH(-)+O(3)-->HO(4)(-)的反向反应,所以 OH(-)+O(3)-->HO(4)(-)的正向反应实际上是不可逆的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验