Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
J Am Chem Soc. 2010 Jan 20;132(2):824-32. doi: 10.1021/ja908878n.
Human serum albumin (HSA), the most abundant protein in plasma, has a very unique function, catalyzing the conversion of prostaglandin J(2) (PGJ(2)), a dehydration product of PGD(2), to yield Delta(12)-PGJ(2). These PGD(2) metabolites are actively transported into cells and accumulated in the nuclei, where they act as potent inducers of cell growth inhibition and cell differentiation, and exhibit their own unique spectrum of biological effects. The facts that (i) arachidonic acid metabolites bind to human serum albumin (HSA) and the metabolism of these molecules is altered as a result of binding, (ii) HSA catalyzes the transformation of PGJ(2) into Delta(12)-PGJ(2), and (iii) Delta(12)-PGJ(2) is stable in serum suggest that HSA may bind and stabilize Delta(12)-PGJ(2) in a specific manner. A molecular interaction analysis using surface plasmon resonance (Biacore) indeed suggested the presence of a specific Delta(12)-PGJ(2)-binding site in HSA. To investigate the molecular details of the binding of this PGD(2) metabolite to albumin, we analyzed the cocrystal structure of the HSA-Delta(12)-PGJ(2)-myristate complex by X-ray crystallography and found that two Delta(12)-PGJ(2) molecules bind to a primary site in subdomain IB of the protein. The electron density results suggested that one of the two Delta(12)-PGJ(2) molecules that specifically bind to the site covalently interacted with a histidine residue (His146). Using nano-LC-MS/MS analysis of the HSA-Delta(12)-PGJ(2) complex, the formation of an unusual Delta(12)-PGJ(2)-histidine adduct at His146 was confirmed. Thus, our crystallographic and mass spectrometric analyses of the HSA-Delta(12)-PGJ(2) complex provided intriguing new insights into the molecular details of how this electrophilic ligand interacts with its primary producer and transporter.
人血清白蛋白(HSA)是血浆中最丰富的蛋白质,具有非常独特的功能,可催化前列腺素 J(2)(PGJ(2))的转化,PGJ(2)是 PGD(2)的脱水产物,生成 Delta(12)-PGJ(2)。这些 PGD(2)代谢物被主动转运到细胞内并积累在核内,在核内它们作为细胞生长抑制和细胞分化的有效诱导剂发挥作用,并表现出自己独特的生物效应谱。以下事实表明:(i)花生四烯酸代谢物与人血清白蛋白(HSA)结合,并且由于结合而改变这些分子的代谢;(ii)HSA 催化 PGJ(2)转化为 Delta(12)-PGJ(2);(iii)Delta(12)-PGJ(2)在血清中稳定,这表明 HSA 可能以特定方式结合并稳定 Delta(12)-PGJ(2)。使用表面等离子体共振(Biacore)的分子相互作用分析确实表明 HSA 中存在 Delta(12)-PGJ(2)的特定结合位点。为了研究这种 PGD(2)代谢物与白蛋白结合的分子细节,我们通过 X 射线晶体学分析了 HSA-Delta(12)-PGJ(2)-肉豆蔻酸复合物的共晶结构,发现两个 Delta(12)-PGJ(2)分子结合到蛋白质的亚结构域 IB 的主要部位。电子密度结果表明,两个特异性结合该位点的 Delta(12)-PGJ(2)分子之一与组氨酸残基(His146)共价相互作用。使用 HSA-Delta(12)-PGJ(2)复合物的纳升 LC-MS/MS 分析,证实了在 His146 处形成了一种不寻常的 Delta(12)-PGJ(2)-组氨酸加合物。因此,我们对 HSA-Delta(12)-PGJ(2)复合物的晶体学和质谱分析提供了引人入胜的新见解,了解了这种亲电配体如何与其主要产生者和转运体相互作用的分子细节。