Suppr超能文献

精细调控腭部发育

Micromanaging Palate Development.

作者信息

Clouthier David E, Gray Josie, Artinger Kristin Bruk

机构信息

Department of Craniofacial Biology, University of Colorado Denver, Aurora, CO 80045, USA.

出版信息

Perspect Speech Sci Orofac Disord. 2008 Oct 1;18(2):62-72. doi: 10.1044/ssod18.2.62.

Abstract

Development of the facial skeleton is one of the most intriguing and intricate events that occur during human development. Most of the bone, cartilage and connective tissue that compose the face and neck arise from a class of cells, referred to as neural crest cells, which are initially located at some distance from the facial primordium. A complex set of events regulated by specific gene products direct the formation, migration and differentiation of these cells, leading to what is viewed as "prototypical" adult facial features. These basic developmental processes are recapitulated during the formation of the palate, termed palatogenesis. In this review, we summarize the basic embryology leading to palate formation, discuss mechanisms that can lead to palatal dysmorphologies and highlight a new interaction that has recently been demonstrated to play a role in palate development. This interaction, involving small non-coding RNAs referred to as microRNAs, not only establishes a new level of regulation to cellular development, but may also serve as attractive targets for future efforts directed at clinical treatment of birth defect syndromes.

摘要

面部骨骼的发育是人类发育过程中最引人入胜且错综复杂的事件之一。构成面部和颈部的大部分骨骼、软骨及结缔组织均起源于一类被称为神经嵴细胞的细胞,这些细胞最初位于距面部原基有一定距离之处。由特定基因产物调控的一系列复杂事件指导着这些细胞的形成、迁移和分化,最终形成被视为“典型”的成人面部特征。在腭部形成过程中,即腭发生过程中,会重现这些基本的发育过程。在本综述中,我们总结了导致腭形成的基本胚胎学知识,讨论了可能导致腭部畸形的机制,并着重介绍了最近被证明在腭部发育中起作用的一种新的相互作用。这种相互作用涉及被称为微小RNA的小非编码RNA,它不仅为细胞发育建立了一个新的调控层面,而且可能成为未来针对出生缺陷综合征进行临床治疗的有吸引力的靶点。

相似文献

1
Micromanaging Palate Development.
Perspect Speech Sci Orofac Disord. 2008 Oct 1;18(2):62-72. doi: 10.1044/ssod18.2.62.
3
Cellular and Molecular Mechanisms of Palatogenesis.
Curr Top Dev Biol. 2015;115:59-84. doi: 10.1016/bs.ctdb.2015.07.002. Epub 2015 Oct 1.
4
MicroRNAs in Palatogenesis and Cleft Palate.
Front Physiol. 2017 Apr 4;8:165. doi: 10.3389/fphys.2017.00165. eCollection 2017.
5
MEMO1 drives cranial endochondral ossification and palatogenesis.
Dev Biol. 2016 Jul 15;415(2):278-295. doi: 10.1016/j.ydbio.2015.12.024. Epub 2015 Dec 31.
6
Pdgfra and Pdgfrb genetically interact during craniofacial development.
Dev Dyn. 2016 Jun;245(6):641-52. doi: 10.1002/dvdy.24403. Epub 2016 Apr 5.
7
Increased miR-200c levels disrupt palatal fusion by affecting apoptosis, cell proliferation, and cell migration.
Biochem Biophys Res Commun. 2023 Jul 5;664:43-49. doi: 10.1016/j.bbrc.2023.04.090. Epub 2023 Apr 26.
8
A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development.
PLoS Genet. 2016 Jan 8;12(1):e1005769. doi: 10.1371/journal.pgen.1005769. eCollection 2016 Jan.
9
Requirement of Hyaluronan Synthase-2 in Craniofacial and Palate Development.
J Dent Res. 2019 Nov;98(12):1367-1375. doi: 10.1177/0022034519872478. Epub 2019 Sep 11.
10
Expression of the retinoblastoma family of tumor suppressors during murine embryonic orofacial development.
Orthod Craniofac Res. 2003 Feb;6(1):32-47. doi: 10.1046/j.1439-0280.2003.2c035.x.

本文引用的文献

1
Analysis of Zfhx1a mutant mice reveals palatal shelf contact-independent medial edge epithelial differentiation during palate fusion.
Cell Tissue Res. 2008 Jul;333(1):29-38. doi: 10.1007/s00441-008-0612-x. Epub 2008 May 10.
2
MicroRNAs in facial development.
Nat Genet. 2008 Mar;40(3):268-9. doi: 10.1038/ng0308-268.
3
MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis.
Nat Genet. 2008 Mar;40(3):290-8. doi: 10.1038/ng.82. Epub 2008 Feb 10.
5
Endogenous human microRNAs that suppress breast cancer metastasis.
Nature. 2008 Jan 10;451(7175):147-52. doi: 10.1038/nature06487.
6
Hand transcription factors cooperatively regulate development of the distal midline mesenchyme.
Dev Biol. 2007 Oct 1;310(1):154-68. doi: 10.1016/j.ydbio.2007.07.036. Epub 2007 Aug 3.
7
Morphing the hyomandibular skeleton in development and evolution.
J Exp Zool B Mol Dev Evol. 2007 Sep 15;308(5):609-24. doi: 10.1002/jez.b.21155.
8
Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities.
Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13403-8. doi: 10.1073/pnas.0603730103. Epub 2006 Aug 28.
9
MicroRNAs and cell differentiation in mammalian development.
Birth Defects Res C Embryo Today. 2006 Jun;78(2):140-9. doi: 10.1002/bdrc.20070.
10
Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
Dev Biol. 2006 Sep 1;297(1):238-48. doi: 10.1016/j.ydbio.2006.05.014. Epub 2006 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验