Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
J Mol Biol. 2010 Mar 5;396(4):870-82. doi: 10.1016/j.jmb.2009.12.015. Epub 2009 Dec 21.
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived omega-aminoaldehydes to the corresponding omega-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with beta-nicotinamide adenine dinucleotide (NAD(+)) at 2.4 and 2.15 A resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD(+) as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD(+) binding site. While the NAD(+) binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into gamma-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, beta-alanine betaine and gamma-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.
氨基酸醛脱氢酶(AMADHs,EC1.2.1.19)属于大型醛脱氢酶(ALDH)超家族,即 ALDH9 家族。它们将多胺衍生的ω-氨基酸醛氧化为相应的ω-氨基酸。在这里,我们报告了植物 AMADHs 的第一个 X 射线结构:来自豌豆(Pisum sativum)的两种同工酶 PsAMADH1 和 PsAMADH2 分别与β-烟酰胺腺嘌呤二核苷酸(NAD(+))复合物的分辨率为 2.4 和 2.15Å。这两种重组蛋白都是二聚体,与其他 ALDH 相似,每个单体由一个寡聚结构域、一个辅酶结合结构域和一个催化结构域组成。每个亚基都作为辅酶结合 NAD(+),含有一个可接近溶剂的 C 末端过氧化物酶体靶向信号(类型 1)和一个结合在靠近 NAD(+)结合位点的空腔中的阳离子。虽然 NAD(+)的结合模式对 PsAMADH2 来说是经典的,但对 PsAMADH1 来说在 ALDH 中是不寻常的。一个甘油分子占据底物结合位点并模拟结合的底物。对两种同工酶的结构分析和底物特异性研究结合以前发表的关于其他 ALDH9 家族成员的数据表明,基于底物特异性将此类酶分为不同组的既定分类不再合适,因为许多酶似乎能够氧化广泛的氨基酸醛底物。PsAMADH1 和 PsAMADH2 可以将 N,N,N-三甲基-4-氨基丁醛氧化为γ-丁酰甜菜碱,这是动物细胞中肉碱的前体。这种活性强烈表明,除了对形成相容性渗透剂(如甘氨酸甜菜碱、β-丙氨酸甜菜碱和γ-氨基丁酸)的贡献外,AMADHs 可能参与植物肉碱的生物合成。