Laboratoire d'Electrochimie et Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05, France.
J Mol Graph Model. 2010 Feb 26;28(6):465-71. doi: 10.1016/j.jmgm.2009.11.001. Epub 2009 Nov 13.
This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes.
这项工作提出了一种基于定量构效关系(QSPR)的方法,允许从基态分子描述符准确预测有机染料(蒽醌和偶氮苯)的激发态性质,这些描述符是在(概念性的)密度泛函理论(DFT)框架内获得的。描述符的从头计算是在几个理论水平上实现的,因此可以统计量化基组大小以及环境效应建模的影响。结果表明,对于整个数据集,基于 PCM-PBE0/6-31G 计算的具有统计学稳健性的四变量多元线性回归提供了 0.93 的调整 R(adj)(2),与允许快速高效染料设计的预测误差相关。所选的所有描述符都与染料家族无关,这是优于先前设计的 QSPR 方案的优势。除此之外,所获得的准确性可与当今参考方法的准确性相媲美,同时超过了基于硬度拟合的准确性。还建立了针对这两种染料家族的特定 QSPR 关系。这项工作为有机染料的可靠和计算上经济实惠的颜色设计铺平了道路。