Suppr超能文献

舔舐诱导的味觉奖励回路同步增强了学习过程中的线索辨别能力。

Licking-induced synchrony in the taste-reward circuit improves cue discrimination during learning.

机构信息

Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

J Neurosci. 2010 Jan 6;30(1):287-303. doi: 10.1523/JNEUROSCI.0855-09.2010.

Abstract

Animals learn which foods to ingest and which to avoid. Despite many studies, the electrophysiological correlates underlying this behavior at the gustatory-reward circuit level remain poorly understood. For this reason, we measured the simultaneous electrical activity of neuronal ensembles in the orbitofrontal cortex, insular cortex, amygdala, and nucleus accumbens while rats licked for taste cues and learned to perform a taste discrimination go/no-go task. This study revealed that rhythmic licking entrains the activity in all these brain regions, suggesting that the animal's licking acts as an "internal clock signal" against which single spikes can be synchronized. That is, as animals learned a go/no-go task, there were increases in the number of licking coherent neurons as well as synchronous spiking between neuron pairs from different brain regions. Moreover, a subpopulation of gustatory cue-selective neurons that fired in synchrony with licking exhibited a greater ability to discriminate among tastants than nonsynchronized neurons. This effect was seen in all four recorded areas and increased markedly after learning, particularly after the cue was delivered and before the animals made a movement to obtain an appetitive or aversive tastant. Overall, these results show that, throughout a large segment of the taste-reward circuit, appetitive and aversive associative learning improves spike-timing precision, suggesting that proficiency in solving a taste discrimination go/no-go task requires licking-induced neural ensemble synchronous activity.

摘要

动物学会了哪些食物可以摄入,哪些食物应该避免。尽管进行了许多研究,但在味觉奖励回路水平上,这种行为的电生理相关性仍知之甚少。出于这个原因,我们在大鼠舔食味觉线索并学习进行味觉辨别“是/否”任务时,测量了眶额皮质、岛叶皮质、杏仁核和伏隔核中神经元集合的同时电活动。这项研究表明,有节奏的舔舐使所有这些大脑区域的活动同步化,这表明动物的舔舐行为起到了“内部时钟信号”的作用,单个尖峰可以与之同步。也就是说,随着动物学习“是/否”任务,舔舐相关神经元的数量以及来自不同脑区的神经元对之间的同步放电都增加了。此外,与舔舐同步发射的味觉线索选择性神经元亚群比非同步神经元具有更强的区分味觉的能力。这种效应在所有四个记录区域都存在,并且在学习后明显增加,特别是在提示呈现后,以及动物做出获得奖赏或厌恶味觉的动作之前。总的来说,这些结果表明,在味觉奖励回路的很大一部分中,奖赏和厌恶的联想学习提高了尖峰定时精度,这表明熟练解决味觉辨别“是/否”任务需要舔舐诱导的神经集合同步活动。

相似文献

1
Licking-induced synchrony in the taste-reward circuit improves cue discrimination during learning.
J Neurosci. 2010 Jan 6;30(1):287-303. doi: 10.1523/JNEUROSCI.0855-09.2010.
2
Speed and accuracy of taste identification and palatability: impact of learning, reward expectancy, and consummatory licking.
Am J Physiol Regul Integr Comp Physiol. 2013 Aug 1;305(3):R252-70. doi: 10.1152/ajpregu.00492.2012. Epub 2013 May 15.
3
An Insula-Central Amygdala Circuit for Guiding Tastant-Reinforced Choice Behavior.
J Neurosci. 2018 Feb 7;38(6):1418-1429. doi: 10.1523/JNEUROSCI.1773-17.2017. Epub 2018 Jan 5.
6
Neural encoding in ventral striatum during olfactory discrimination learning.
Neuron. 2003 May 22;38(4):625-36. doi: 10.1016/s0896-6273(03)00264-2.
7
Rapid taste responses in the gustatory cortex during licking.
J Neurosci. 2006 Apr 12;26(15):4126-38. doi: 10.1523/JNEUROSCI.0092-06.2006.
8
Orbitofrontal ensemble activity monitors licking and distinguishes among natural rewards.
J Neurophysiol. 2006 Jan;95(1):119-33. doi: 10.1152/jn.00467.2005. Epub 2005 Aug 24.
9
Distinct neural ensembles in the rat gustatory cortex encode salt and water tastes.
J Physiol. 2012 Jul 1;590(13):3169-84. doi: 10.1113/jphysiol.2012.233486. Epub 2012 May 8.
10
Changes in Appetitive Associative Strength Modulates Nucleus Accumbens, But Not Orbitofrontal Cortex Neuronal Ensemble Excitability.
J Neurosci. 2017 Mar 22;37(12):3160-3170. doi: 10.1523/JNEUROSCI.3766-16.2017. Epub 2017 Feb 17.

引用本文的文献

1
A brain-wide map of neural activity during complex behaviour.
Nature. 2025 Sep;645(8079):177-191. doi: 10.1038/s41586-025-09235-0. Epub 2025 Sep 3.
2
Automatic OptoDrive for Extracellular Recordings and Optogenetic Stimulation in Freely Moving Mice.
eNeuro. 2025 Jun 25;12(6). doi: 10.1523/ENEURO.0015-25.2025. Print 2025 Jun.
3
Nucleus accumbens D2-expressing neurons: Balancing reward and licking disruption through rhythmic optogenetic stimulation.
PLoS One. 2025 Feb 7;20(2):e0317605. doi: 10.1371/journal.pone.0317605. eCollection 2025.
4
Neuronal Sequences and dynamic coding of water-sucrose categorization in rat gustatory cortices.
iScience. 2024 Oct 30;27(12):111287. doi: 10.1016/j.isci.2024.111287. eCollection 2024 Dec 20.
5
Amygdala and Cortex Relationships during Learning of a Sensory Discrimination Task.
J Neurosci. 2024 Aug 21;44(34):e0125242024. doi: 10.1523/JNEUROSCI.0125-24.2024.
6
Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala.
iScience. 2024 Apr 1;27(5):109652. doi: 10.1016/j.isci.2024.109652. eCollection 2024 May 17.
7
Oral thermal processing in the gustatory cortex of awake mice.
Chem Senses. 2023 Jan 1;48. doi: 10.1093/chemse/bjad042.
8
Studying behavior under constrained movement.
Elife. 2023 Aug 30;12:e91145. doi: 10.7554/eLife.91145.
9
Active Licking Shapes Cortical Taste Coding.
J Neurosci. 2022 Nov 16;42(46):8658-8669. doi: 10.1523/JNEUROSCI.0942-22.2022. Epub 2022 Oct 4.
10
Glial cells in anorexia.
Front Cell Neurosci. 2022 Aug 8;16:983577. doi: 10.3389/fncel.2022.983577. eCollection 2022.

本文引用的文献

1
High-frequency, long-range coupling between prefrontal and visual cortex during attention.
Science. 2009 May 29;324(5931):1207-10. doi: 10.1126/science.1171402.
2
Encoding of gustatory working memory by orbitofrontal neurons.
J Neurosci. 2009 Jan 21;29(3):765-74. doi: 10.1523/JNEUROSCI.4637-08.2009.
3
Ensembles of gustatory cortical neurons anticipate and discriminate between tastants in a single lick.
Front Neurosci. 2007 Oct 15;1(1):161-74. doi: 10.3389/neuro.01.1.1.012.2007. eCollection 2007 Nov.
4
Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli.
Nat Neurosci. 2008 Dec;11(12):1376-7. doi: 10.1038/nn.2219. Epub 2008 Nov 2.
5
Forward frontal fields: phylogeny and fundamental function.
Trends Neurosci. 2008 Dec;31(12):599-608. doi: 10.1016/j.tins.2008.08.008. Epub 2008 Oct 4.
6
Moment-to-moment tracking of state value in the amygdala.
J Neurosci. 2008 Oct 1;28(40):10023-30. doi: 10.1523/JNEUROSCI.1400-08.2008.
7
Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice.
Nature. 2008 Aug 14;454(7206):881-5. doi: 10.1038/nature07150. Epub 2008 Jul 16.
8
Neuronal activity of mitral-tufted cells in awake rats during passive and active odorant stimulation.
J Neurophysiol. 2008 Jul;100(1):422-30. doi: 10.1152/jn.00095.2008. Epub 2008 May 21.
9
Neural substrates of vocalization feedback monitoring in primate auditory cortex.
Nature. 2008 Jun 19;453(7198):1102-6. doi: 10.1038/nature06910. Epub 2008 May 4.
10
Learning-related plasticity of temporal coding in simultaneously recorded amygdala-cortical ensembles.
J Neurosci. 2008 Mar 12;28(11):2864-73. doi: 10.1523/JNEUROSCI.4063-07.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验