Suppr超能文献

亚衍射分辨率荧光图像的实时计算。

Real-time computation of subdiffraction-resolution fluorescence images.

机构信息

Applied Laser Physics & Laser Spectroscopy, Department of Physics, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany.

出版信息

J Microsc. 2010 Jan;237(1):12-22. doi: 10.1111/j.1365-2818.2009.03287.x.

Abstract

In the recent past, single-molecule based localization or photoswitching microscopy methods such as stochastic optical reconstruction microscopy (STORM) or photoactivated localization microscopy (PALM) have been successfully implemented for subdiffraction-resolution fluorescence imaging. However, the computational effort needed to localize numerous fluorophores is tremendous, causing long data processing times and thereby limiting the applicability of the technique. Here we present a new computational scheme for data processing consisting of noise reduction, detection of likely fluorophore positions, high-precision fluorophore localization and subsequent visualization of found fluorophore positions in a super-resolution image. We present and benchmark different algorithms for noise reduction and demonstrate the use of non-maximum suppression to quickly find likely fluorophore positions in high depth and very noisy images. The algorithm is evaluated and compared in terms of speed, accuracy and robustness by means of simulated data. On real biological samples, we find that real-time data processing is possible and that super-resolution imaging with organic fluorophores of cellular structures with approximately 20 nm optical resolution can be completed in less than 10 s.

摘要

在最近的过去,基于单分子的定位或光开关显微镜方法,如随机光学重建显微镜(STORM)或光激活定位显微镜(PALM),已经成功地用于亚衍射分辨率荧光成像。然而,定位大量荧光团所需的计算工作量是巨大的,导致数据处理时间长,从而限制了该技术的适用性。在这里,我们提出了一种新的用于数据处理的计算方案,包括降噪、检测可能的荧光团位置、高精度荧光团定位以及随后在超分辨率图像中可视化发现的荧光团位置。我们提出并基准测试了不同的降噪算法,并演示了使用非最大值抑制来快速找到高深度和非常嘈杂图像中可能的荧光团位置。该算法通过模拟数据从速度、准确性和鲁棒性方面进行了评估和比较。在真实的生物样本上,我们发现实时数据处理是可能的,并且可以在不到 10 秒的时间内完成具有约 20nm 光学分辨率的细胞结构的有机荧光团的超分辨率成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验