Suppr超能文献

躯干负荷和躯干位置适应在落地过程中对膝关节前向剪切力和腘绳肌肌力的相互影响。

The interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing.

机构信息

Department of Health Education and Promotion, East Carolina University, Greenville, NC 27858, USA.

出版信息

J Athl Train. 2010 Jan-Feb;45(1):5-15. doi: 10.4085/1062-6050-45.1.5.

Abstract

CONTEXT

Because anterior cruciate ligament (ACL) injuries can occur during deceleration maneuvers, biomechanics research has been focused on the lower extremity kinetic chain. Trunk mass and changes in trunk position affect lower extremity joint torques and work during gait and landing, but how the trunk affects knee joint and muscle forces is not well understood.

OBJECTIVE

To evaluate the effects of added trunk load and adaptations to trunk position on knee anterior shear and knee muscle forces in landing.

DESIGN

Crossover study.

SETTING

Controlled laboratory environment.

PATIENTS OR OTHER PARTICIPANTS

Twenty-one participants (10 men: age = 20.3 +/- 1.15 years, height = 1.82 +/- 0.04 m, mass = 78.2 +/- 7.3 kg; 11 women: age = 20.0 +/- 1.10 years, height = 1.72 +/- 0.06 m, mass = 62.3 +/- 6.4 kg).

INTERVENTION(S): Participants performed 2 sets of 8 double-leg landings under 2 conditions: no load and trunk load (10% body mass). Participants were categorized into one of 2 groups based on the kinematic trunk adaptation to the load: trunk flexor or trunk extensor.

MAIN OUTCOME MEASURE(S): We estimated peak and average knee anterior shear, quadriceps, hamstrings, and gastrocnemius forces with a biomechanical model.

RESULTS

We found condition-by-group interactions showing that adding a trunk load increased peak (17%) and average (35%) knee anterior shear forces in the trunk-extensor group but did not increase them in the trunk-flexor group (peak: F(1,19) = 10.56, P = .004; average: F(1,19) = 9.56, P = .006). We also found a main effect for condition for quadriceps and gastrocnemius forces. When trunk load was added, peak (6%; F(1,19) = 5.52, P = .030) and average (8%; F(1,19) = 8.83, P = .008) quadriceps forces increased and average (4%; F(1,19) = 4.94, P = .039) gastrocnemius forces increased, regardless of group. We found a condition-by-group interaction for peak (F(1,19) = 5.16, P = .035) and average (F(1,19) = 12.35, P = .002) hamstrings forces. When trunk load was added, average hamstrings forces decreased by 16% in the trunk-extensor group but increased by 13% in the trunk-flexor group.

CONCLUSIONS

Added trunk loads increased knee anterior shear and knee muscle forces, depending on trunk adaptation strategy. The trunk-extensor adaptation to the load resulted in a quadriceps-dominant strategy that increased knee anterior shear forces. Trunk-flexor adaptations may serve as a protective strategy against the added load. These findings should be interpreted with caution, as only the face validity of the biomechanical model was assessed.

摘要

背景

由于前交叉韧带(ACL)损伤可能发生在减速运动中,因此生物力学研究一直集中在下肢运动链上。躯干质量和躯干位置的变化会影响步态和着陆时的下肢关节扭矩和功,但躯干如何影响膝关节和肌肉力还不太清楚。

目的

评估附加躯干负荷和适应躯干位置对着陆时膝关节前向剪切力和膝关节肌肉力的影响。

设计

交叉研究。

设置

受控实验室环境。

患者或其他参与者

21 名参与者(10 名男性:年龄=20.3±1.15 岁,身高=1.82±0.04 m,体重=78.2±7.3 kg;11 名女性:年龄=20.0±1.10 岁,身高=1.72±0.06 m,体重=62.3±6.4 kg)。

干预

参与者在 2 种条件下进行 2 组 8 次双腿着陆:无负荷和躯干负荷(10%体重)。根据躯干对负荷的运动适应性,参与者被分为 2 组之一:躯干屈肌或躯干伸肌。

主要观察指标

我们使用生物力学模型估计峰值和平均膝关节前向剪切力、股四头肌、腘绳肌和腓肠肌的力。

结果

我们发现条件-组间存在交互作用,表明在躯干伸肌组中,附加躯干负荷增加了峰值(17%)和平均(35%)膝关节前向剪切力,但在躯干屈肌组中没有增加(峰值:F(1,19)=10.56,P=0.004;平均:F(1,19)=9.56,P=0.006)。我们还发现条件对股四头肌和腓肠肌力有主要影响。当附加躯干负荷时,峰值(6%;F(1,19)=5.52,P=0.030)和平均(8%;F(1,19)=8.83,P=0.008)股四头肌力增加,平均(4%;F(1,19)=4.94,P=0.039)腓肠肌力增加,无论组别如何。我们发现峰值(F(1,19)=5.16,P=0.035)和平均(F(1,19)=12.35,P=0.002)的腘绳肌力存在条件-组间交互作用。当附加躯干负荷时,躯干伸肌组的平均腘绳肌力下降 16%,而躯干屈肌组的平均腘绳肌力增加 13%。

结论

附加躯干负荷会增加膝关节前向剪切力和膝关节肌肉力,这取决于躯干的适应策略。躯干伸肌对负荷的适应导致股四头肌主导的策略,增加了膝关节前向剪切力。躯干屈肌的适应可能是一种对抗附加负荷的保护策略。这些发现应谨慎解释,因为仅评估了生物力学模型的表面有效性。

相似文献

2
Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading.
J Athl Train. 2013 Nov-Dec;48(6):764-72. doi: 10.4085/1062-6050-48.4.01.
3
Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction.
Knee Surg Sports Traumatol Arthrosc. 2008 Jan;16(1):2-14. doi: 10.1007/s00167-007-0427-4. Epub 2007 Nov 1.
6
Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction.
J Athl Train. 2013 Sep-Oct;48(5):610-20. doi: 10.4085/1062-6050-48.3.23.
7
Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses.
J Athl Train. 2013 Nov-Dec;48(6):748-56. doi: 10.4085/1062-6050-48.4.09. Epub 2013 Aug 14.
8
Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity.
J Athl Train. 2009 Mar-Apr;44(2):174-9. doi: 10.4085/1062-6050-44.2.174.
9
Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury.
Knee Surg Sports Traumatol Arthrosc. 2013 Apr;21(4):888-97. doi: 10.1007/s00167-012-2011-9. Epub 2012 Apr 28.

引用本文的文献

3
Neuromuscular Control During Stair Descent and Artificial Tibial Translation After Acute ACL Rupture.
Orthop J Sports Med. 2022 Oct 13;10(10):23259671221123299. doi: 10.1177/23259671221123299. eCollection 2022 Oct.
4
Greater Breast Support Alters Trunk and Knee Joint Biomechanics Commonly Associated With Anterior Cruciate Ligament Injury.
Front Sports Act Living. 2022 May 20;4:861553. doi: 10.3389/fspor.2022.861553. eCollection 2022.
5
Effect of Jump Direction and External Load on Single-Legged Jump-Landing Biomechanics.
Int J Exerc Sci. 2020 Feb 1;13(1):234-248. doi: 10.70252/NTSB4796. eCollection 2020.
7
Running Propensities of Athletes with Hamstring Injuries.
Sports (Basel). 2019 Sep 12;7(9):210. doi: 10.3390/sports7090210.
8
Core-Muscle Training and Neuromuscular Control of the Lower Limb and Trunk.
J Athl Train. 2019 Sep;54(9):959-969. doi: 10.4085/1062-6050-113-17. Epub 2019 Aug 6.
9
The effects of mid-flight whole-body and trunk rotation on landing mechanics: implications for anterior cruciate ligament injuries.
Sports Biomech. 2020 Aug;19(4):421-437. doi: 10.1080/14763141.2019.1595704. Epub 2019 Apr 4.

本文引用的文献

1
Muscle function may depend on model selection in forward simulation of normal walking.
J Biomech. 2008 Nov 14;41(15):3236-42. doi: 10.1016/j.jbiomech.2008.08.008. Epub 2008 Sep 19.
3
The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting.
J Biomech. 2007;40(16):3555-62. doi: 10.1016/j.jbiomech.2007.05.026. Epub 2007 Jul 19.
4
Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study.
Am J Sports Med. 2007 Jul;35(7):1123-30. doi: 10.1177/0363546507301585. Epub 2007 Apr 27.
5
Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases.
Am J Sports Med. 2007 Mar;35(3):359-67. doi: 10.1177/0363546506293899. Epub 2006 Nov 7.
7
The human gluteus maximus and its role in running.
J Exp Biol. 2006 Jun;209(Pt 11):2143-55. doi: 10.1242/jeb.02255.
8
Lower extremity biomechanics during the landing of a stop-jump task.
Clin Biomech (Bristol). 2006 Mar;21(3):297-305. doi: 10.1016/j.clinbiomech.2005.11.003. Epub 2005 Dec 27.
9
Muscle, ligament, and joint-contact forces at the knee during walking.
Med Sci Sports Exerc. 2005 Nov;37(11):1948-56. doi: 10.1249/01.mss.0000180404.86078.ff.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验