Suppr超能文献

分子伴侣与未折叠蛋白底物结合的热力学分析。

Thermodynamic analysis of a molecular chaperone binding to unfolded protein substrates.

机构信息

Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, USA.

出版信息

Biochemistry. 2010 Feb 16;49(6):1346-53. doi: 10.1021/bi902010t.

Abstract

Molecular chaperones are a highly diverse group of proteins that recognize and bind unfolded proteins to facilitate protein folding and prevent nonspecific protein aggregation. The mechanisms by which chaperones bind their protein substrates have been studied for decades. However, there are few reports about the affinity of molecular chaperones for their unfolded protein substrates. Thus, little is known about the relative binding affinities of different chaperones and about the relative binding affinities of chaperones for different unfolded protein substrates. Here we describe the application of SUPREX (stability of unpurified proteins from rates of H-D exchange), an H-D exchange and MALDI-based technique, in studying the binding interaction between the molecular chaperone Hsp33 and four different unfolded protein substrates, including citrate synthase, lactate dehydrogenase, malate dehydrogenase, and aldolase. The results of our studies suggest that the cooperativity of the Hsp33 folding-unfolding reaction increases upon binding with denatured protein substrates. This is consistent with the burial of significant hydrophobic surface area in Hsp33 when it interacts with its substrate proteins. The SUPREX-derived K(d) values for Hsp33 complexes with four different substrates were all found to be within the range of 3-300 nM.

摘要

分子伴侣是一组高度多样化的蛋白质,它们能识别和结合未折叠的蛋白质,促进蛋白质折叠并防止非特异性蛋白质聚集。几十年来,人们一直在研究伴侣蛋白结合其蛋白质底物的机制。然而,关于分子伴侣与其未折叠蛋白底物的亲和力的报道却很少。因此,人们对不同伴侣蛋白的相对结合亲和力以及伴侣蛋白对不同未折叠蛋白底物的相对结合亲和力知之甚少。在这里,我们描述了 SUPREX(未纯化蛋白的 H-D 交换稳定性)的应用,这是一种基于 H-D 交换和 MALDI 的技术,用于研究分子伴侣 Hsp33 与四种不同的未折叠蛋白底物(包括柠檬酸合酶、乳酸脱氢酶、苹果酸脱氢酶和醛缩酶)之间的结合相互作用。我们的研究结果表明,Hsp33 折叠-展开反应的协同性在与变性蛋白底物结合时增加。这与 Hsp33 与底物蛋白相互作用时掩埋大量疏水表面积的情况一致。从 SUPREX 得出的 Hsp33 与四种不同底物的复合物的 K(d) 值均在 3-300 nM 的范围内。

相似文献

1
Thermodynamic analysis of a molecular chaperone binding to unfolded protein substrates.
Biochemistry. 2010 Feb 16;49(6):1346-53. doi: 10.1021/bi902010t.
3
Unique Unfoldase/Aggregase Activity of a Molecular Chaperone Hsp33 in its Holding-Inactive State.
J Mol Biol. 2019 Mar 29;431(7):1468-1480. doi: 10.1016/j.jmb.2019.02.022. Epub 2019 Feb 27.
4
Identification of a redox-regulated chaperone network.
EMBO J. 2004 Jan 14;23(1):160-8. doi: 10.1038/sj.emboj.7600016. Epub 2003 Dec 11.
5
Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity.
FEBS Lett. 2011 Feb 18;585(4):664-70. doi: 10.1016/j.febslet.2011.01.029. Epub 2011 Jan 23.
7
Characterization of the Escherichia coli YedU protein as a molecular chaperone.
Biochem Biophys Res Commun. 2003 Feb 7;301(2):430-6. doi: 10.1016/s0006-291x(02)03053-x.
9
Order out of disorder: working cycle of an intrinsically unfolded chaperone.
Cell. 2012 Mar 2;148(5):947-57. doi: 10.1016/j.cell.2012.01.045.
10
Chaperone properties of the bacterial periplasmic substrate-binding proteins.
J Biol Chem. 1997 Jun 20;272(25):15607-12. doi: 10.1074/jbc.272.25.15607.

引用本文的文献

2
The Anti-Aggregation Holdase Hsp33 Promotes the Formation of Folded Protein Structures.
Biophys J. 2020 Jan 7;118(1):85-95. doi: 10.1016/j.bpj.2019.10.040. Epub 2019 Nov 11.
3
Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules.
Biophys J. 2014 Dec 2;107(11):2579-91. doi: 10.1016/j.bpj.2014.09.043.
4
Order out of disorder: working cycle of an intrinsically unfolded chaperone.
Cell. 2012 Mar 2;148(5):947-57. doi: 10.1016/j.cell.2012.01.045.
5
Protein-protein binding affinities in solution determined by electrospray mass spectrometry.
J Am Soc Mass Spectrom. 2011 Mar;22(3):408-17. doi: 10.1007/s13361-010-0052-1. Epub 2011 Feb 1.

本文引用的文献

1
Structural characterization of clusterin-chaperone client protein complexes.
J Biol Chem. 2009 Aug 14;284(33):21920-21927. doi: 10.1074/jbc.M109.033688. Epub 2009 Jun 17.
3
H/D exchange- and mass spectrometry-based strategy for the thermodynamic analysis of protein-ligand binding.
Anal Chem. 2007 Aug 1;79(15):5869-77. doi: 10.1021/ac0700777. Epub 2007 Jun 21.
4
Structural and thermodynamic characterization of a cytoplasmic dynein light chain-intermediate chain complex.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10028-33. doi: 10.1073/pnas.0703614104. Epub 2007 Jun 5.
5
The redox-switch domain of Hsp33 functions as dual stress sensor.
Nat Struct Mol Biol. 2007 Jun;14(6):556-63. doi: 10.1038/nsmb1244. Epub 2007 May 21.
7
Thermodynamic analysis of subunit interactions in Escherichia coli molybdopterin synthase.
Biochemistry. 2005 Feb 22;44(7):2595-601. doi: 10.1021/bi047762h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验