Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA.
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1343-8. doi: 10.1073/pnas.0910383107. Epub 2010 Jan 6.
Generation of cultured human cells stably expressing one or more recombinant gene sequences is a widely used approach in biomedical research, biotechnology, and drug development. Conventional methods are not efficient and have severe limitations especially when engineering cells to coexpress multiple transgenes or multiprotein complexes. In this report, we harnessed the highly efficient, nonviral, and plasmid-based piggyBac transposon system to enable concurrent genomic integration of multiple independent transposons harboring distinct protein-coding DNA sequences. Flow cytometry of cell clones derived from a single multiplexed transfection demonstrated approximately 60% (three transposons) or approximately 30% (four transposons) stable coexpression of all delivered transgenes with selection for a single marker transposon. We validated multiplexed piggyBac transposon delivery by coexpressing large transgenes encoding a multisubunit neuronal voltage-gated sodium channel (SCN1A) containing a pore-forming subunit and two accessory subunits while using two additional genes for selection. Previously unobtainable robust sodium current was demonstrated through 38 passages, suitable for use on an automated high-throughput electrophysiology platform. Cotransfection of three large (up to 10.8 kb) piggyBac transposons generated a heterozygous SCN1A stable cell line expressing two separate alleles of the pore-forming subunit and two accessory subunits (total of four sodium channel subunits) with robust functional expression. We conclude that the piggyBac transposon system can be used to perform multiplexed stable gene transfer in cultured human cells, and this technology may be valuable for applications requiring concurrent expression of multiprotein complexes.
培养稳定表达一个或多个重组基因序列的人类细胞是生物医学研究、生物技术和药物开发中广泛使用的方法。传统方法效率不高,存在严重的局限性,尤其是在工程细胞以共表达多个转基因或多蛋白复合物时。在本报告中,我们利用高效、非病毒、基于质粒的 piggyBac 转座子系统,实现了多个独立携带不同编码蛋白 DNA 序列的转座子的基因组同时整合。对来自单个多重转染的细胞克隆进行流式细胞术分析,证明了所有转染基因的稳定共表达率约为 60%(三个转座子)或约 30%(四个转座子),其中选择单一标记转座子。我们通过共表达包含一个孔形成亚基和两个辅助亚基的多亚基神经元电压门控钠离子通道(SCN1A)的大转基因(编码多达 10.8kb 的多亚基神经元电压门控钠离子通道),同时使用两个额外的基因进行选择,验证了多重 piggyBac 转座子传递。通过 38 次传代,证明了以前无法获得的稳健钠离子电流,适用于自动化高通量电生理学平台。三个大(高达 10.8kb)的 piggyBac 转座子的共转染产生了一个杂合 SCN1A 稳定细胞系,表达两个独立的孔形成亚基和两个辅助亚基(总共四个钠离子通道亚基),具有稳健的功能表达。我们得出结论,piggyBac 转座子系统可用于在培养的人类细胞中进行多重稳定基因转移,这项技术对于需要同时表达多蛋白复合物的应用可能具有重要价值。