Suppr超能文献

R 环会刺激 CTG.CAG 重复序列的遗传不稳定性。

R loops stimulate genetic instability of CTG.CAG repeats.

机构信息

Baylor College of Medicine, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, One Baylor Plaza, Houston, TX 77030, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):692-7. doi: 10.1073/pnas.0909740107. Epub 2009 Dec 22.

Abstract

Transcription stimulates the genetic instability of trinucleotide repeat sequences. However, the mechanisms leading to transcription-dependent repeat length variation are unclear. We demonstrate, using biochemical and genetic approaches, that the formation of stable RNA.DNA hybrids enhances the instability of CTG.CAG repeat tracts. In vitro transcribed CG-rich repeating sequences, unlike AT-rich repeats and nonrepeating sequences, form stable, ribonuclease A-resistant structures. These RNA.DNA hybrids are eliminated by ribonuclease H treatment. Mutation in the rnhA1 gene that decreases the activity of ribonuclease HI stimulates the instability of CTG.CAG repeats in E. coli. Importantly, the effect of ribonuclease HI depletion on repeat instability requires active transcription. We also showed that transcription-dependent CTG.CAG repeat instability in human cells is stimulated by siRNA knockdown of RNase H1 and H2. In addition, we used bisulfite modification, which detects single-stranded DNA, to demonstrate that the nontemplate DNA strand at transcribed CTG.CAG repeats remains partially single-stranded in human genomic DNA, thus indicating that it is displaced by an RNA.DNA hybrid. These studies demonstrate that persistent hybrids between the nascent RNA transcript and the template DNA strand at CTG.CAG tracts promote instability of DNA trinucleotide repeats.

摘要

转录可刺激三核苷酸重复序列的遗传不稳定性。然而,导致依赖转录的重复长度变化的机制尚不清楚。我们通过生化和遗传方法证明,稳定的 RNA-DNA 杂交体的形成增强了 CTG.CAG 重复片段的不稳定性。与富含 AT 的重复序列和非重复序列不同,体外转录的 CG 丰富重复序列形成稳定的、抗核糖核酸酶 A 的结构。这些 RNA-DNA 杂交体被核糖核酸酶 H 处理消除。降低核糖核酸酶 HI 活性的 rnhA1 基因突变可刺激大肠杆菌中 CTG.CAG 重复序列的不稳定性。重要的是,核糖核酸酶 HI 耗竭对重复不稳定性的影响需要活跃的转录。我们还表明,siRNA 敲低 RNase H1 和 H2 可刺激人类细胞中依赖转录的 CTG.CAG 重复不稳定性。此外,我们使用可检测单链 DNA 的亚硫酸氢盐修饰来证明,在转录的 CTG.CAG 重复序列中,非模板 DNA 链仍部分保持单链状态,这表明它被 RNA-DNA 杂交体取代。这些研究表明,在 CTG.CAG 片段处新生 RNA 转录本和模板 DNA 链之间持续存在的杂交体促进了 DNA 三核苷酸重复序列的不稳定性。

相似文献

1
R loops stimulate genetic instability of CTG.CAG repeats.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):692-7. doi: 10.1073/pnas.0909740107. Epub 2009 Dec 22.
2
Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability.
Nucleic Acids Res. 2014;42(16):10473-87. doi: 10.1093/nar/gku658. Epub 2014 Aug 21.
3
New insights into repeat instability: role of RNA•DNA hybrids.
RNA Biol. 2010 Sep-Oct;7(5):551-8. doi: 10.4161/rna.7.5.12745. Epub 2010 Sep 1.
4
R-loops: targets for nuclease cleavage and repeat instability.
Curr Genet. 2018 Aug;64(4):789-794. doi: 10.1007/s00294-018-0806-z. Epub 2018 Jan 11.
5
DNA tandem repeat instability in the Escherichia coli chromosome is stimulated by mismatch repair at an adjacent CAG·CTG trinucleotide repeat.
Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22582-6. doi: 10.1073/pnas.1012906108. Epub 2010 Dec 13.
6
Involvement of the nucleotide excision repair protein UvrA in instability of CAG*CTG repeat sequences in Escherichia coli.
J Biol Chem. 2001 Aug 17;276(33):30878-84. doi: 10.1074/jbc.M104697200. Epub 2001 Jun 18.
7
Length of CTG.CAG repeats determines the influence of mismatch repair on genetic instability.
J Mol Biol. 2000 Jun 16;299(4):865-74. doi: 10.1006/jmbi.2000.3796.
9
Relationship between Escherichia coli growth and deletions of CTG.CAG triplet repeats in plasmids.
J Mol Biol. 1996 Nov 22;264(1):82-96. doi: 10.1006/jmbi.1996.0625.
10
Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.
Nat Struct Mol Biol. 2009 Aug;16(8):869-75. doi: 10.1038/nsmb.1638. Epub 2009 Jul 13.

引用本文的文献

2
Transcription-Coupled Repair and R-Loop Crosstalk in Genome Stability.
Int J Mol Sci. 2025 Apr 16;26(8):3744. doi: 10.3390/ijms26083744.
3
Building an integrated view of R-loops, transcription, and chromatin.
DNA Repair (Amst). 2025 May;149:103832. doi: 10.1016/j.dnarep.2025.103832. Epub 2025 Apr 8.
4
Fitness landscapes of human microsatellites.
PLoS Genet. 2024 Dec 30;20(12):e1011524. doi: 10.1371/journal.pgen.1011524. eCollection 2024 Dec.
6
7
Role of senataxin in R-loop-mediated neurodegeneration.
Brain Commun. 2024 Jul 15;6(4):fcae239. doi: 10.1093/braincomms/fcae239. eCollection 2024.
8
co-evolving with the CAG-repeat tract - modulates Huntington's disease phenotypes.
Mol Ther Nucleic Acids. 2024 Jun 3;35(3):102234. doi: 10.1016/j.omtn.2024.102234. eCollection 2024 Sep 10.

本文引用的文献

1
Progressive GAA.TTC repeat expansion in human cell lines.
PLoS Genet. 2009 Oct;5(10):e1000704. doi: 10.1371/journal.pgen.1000704. Epub 2009 Oct 30.
3
Diverse effects of individual mismatch repair components on transcription-induced CAG repeat instability in human cells.
DNA Repair (Amst). 2009 Aug 6;8(8):878-85. doi: 10.1016/j.dnarep.2009.04.024. Epub 2009 Jun 3.
5
Dynamics and stability of individual base pairs in two homologous RNA-DNA hybrids.
Biochemistry. 2009 May 12;48(18):3988-97. doi: 10.1021/bi900070f.
6
Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes.
FEBS J. 2009 Mar;276(6):1482-93. doi: 10.1111/j.1742-4658.2009.06907.x. Epub 2009 Feb 18.
8
The antisense transcriptomes of human cells.
Science. 2008 Dec 19;322(5909):1855-7. doi: 10.1126/science.1163853. Epub 2008 Dec 4.
10
Transcription destabilizes triplet repeats.
Mol Carcinog. 2009 Apr;48(4):350-61. doi: 10.1002/mc.20488.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验