Suppr超能文献

谱系特异性转录因子与基因调控网络的进化。

Lineage-specific transcription factors and the evolution of gene regulatory networks.

机构信息

Department of Cell and Developmental Biology, Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Drive, Urbana, IL 61802, USA.

出版信息

Brief Funct Genomics. 2010 Jan;9(1):65-78. doi: 10.1093/bfgp/elp056. Epub 2010 Jan 16.

Abstract

Nature is replete with examples of diverse cell types, tissues and body plans, forming very different creatures from genomes with similar gene complements. However, while the genes and the structures of proteins they encode can be highly conserved, the production of those proteins in specific cell types and at specific developmental time points might differ considerably between species. A full understanding of the factors that orchestrate gene expression will be essential to fully understand evolutionary variety. Transcription factor (TF) proteins, which form gene regulatory networks (GRNs) to act in cooperative or competitive partnerships to regulate gene expression, are key components of these unique regulatory programs. Although many TFs are conserved in structure and function, certain classes of TFs display extensive levels of species diversity. In this review, we highlight families of TFs that have expanded through gene duplication events to create species-unique repertoires in different evolutionary lineages. We discuss how the hierarchical structures of GRNs allow for flexible small to large-scale phenotypic changes. We survey evidence that explains how newly evolved TFs may be integrated into an existing GRN and how molecular changes in TFs might impact the GRNs. Finally, we review examples of traits that evolved due to lineage-specific TFs and species differences in GRNs.

摘要

自然界充满了各种不同的细胞类型、组织和身体形态的例子,它们形成了非常不同的生物,而这些生物的基因组具有相似的基因组成。然而,虽然基因及其编码的蛋白质结构可能高度保守,但这些蛋白质在特定细胞类型和特定发育时间点的产生在物种间可能有很大差异。充分了解协调基因表达的因素对于充分理解进化多样性至关重要。转录因子(TF)蛋白形成基因调控网络(GRN),以合作或竞争的伙伴关系发挥作用,调节基因表达,是这些独特调控程序的关键组成部分。虽然许多 TF 在结构和功能上是保守的,但某些 TF 类显示出广泛的物种多样性。在这篇综述中,我们强调了通过基因复制事件扩展的 TF 家族,在不同的进化谱系中创造了物种独特的库。我们讨论了 GRN 的层次结构如何允许灵活的小到大规模的表型变化。我们调查了解释新进化的 TF 如何被整合到现有的 GRN 中以及 TF 中的分子变化如何影响 GRN 的证据。最后,我们回顾了由于谱系特异性 TF 和 GRN 中的物种差异而进化的特征的例子。

相似文献

1
Lineage-specific transcription factors and the evolution of gene regulatory networks.
Brief Funct Genomics. 2010 Jan;9(1):65-78. doi: 10.1093/bfgp/elp056. Epub 2010 Jan 16.
2
Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize.
BMC Plant Biol. 2018 Jun 7;18(1):111. doi: 10.1186/s12870-018-1329-y.
4
Asymmetric evolution of human transcription factor regulatory networks.
Mol Biol Evol. 2014 Aug;31(8):2149-55. doi: 10.1093/molbev/msu163. Epub 2014 May 19.
5
Regulatory network structure as a dominant determinant of transcription factor evolutionary rate.
PLoS Comput Biol. 2012;8(10):e1002734. doi: 10.1371/journal.pcbi.1002734. Epub 2012 Oct 18.
6
Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
Genesis. 2014 Mar;52(3):193-207. doi: 10.1002/dvg.22757. Epub 2014 Mar 6.
7
Q&A: How do gene regulatory networks control environmental responses in plants?
BMC Biol. 2018 Apr 11;16(1):38. doi: 10.1186/s12915-018-0506-7.
8
The Evolution of SlyA/RovA Transcription Factors from Repressors to Countersilencers in .
mBio. 2019 Mar 5;10(2):e00009-19. doi: 10.1128/mBio.00009-19.

引用本文的文献

2
3
Deciphering the Landscape of GATA-Mediated Transcriptional Regulation in Gastric Cancer.
Antioxidants (Basel). 2024 Oct 18;13(10):1267. doi: 10.3390/antiox13101267.
4
Genetic features and genomic targets of human KRAB-zinc finger proteins.
Genome Res. 2023 Aug;33(8):1409-1423. doi: 10.1101/gr.277722.123. Epub 2023 Sep 20.
6
Identification of genes contributing to cisplatin resistance in osteosarcoma cells.
FEBS Open Bio. 2023 Jan;13(1):164-173. doi: 10.1002/2211-5463.13524. Epub 2022 Nov 29.
9
Positive Selection in Gene Regulatory Factors Suggests Adaptive Pleiotropic Changes During Human Evolution.
Front Genet. 2021 May 17;12:662239. doi: 10.3389/fgene.2021.662239. eCollection 2021.
10
Multiple Isolated Transcription Factors Act as Switches and Contribute to Species Uniqueness.
Genes (Basel). 2020 Sep 29;11(10):1148. doi: 10.3390/genes11101148.

本文引用的文献

1
Differences in human and chimpanzee gene expression patterns define an evolving network of transcription factors in brain.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22358-63. doi: 10.1073/pnas.0911376106. Epub 2009 Dec 10.
3
The organization of the transcriptional network in specific neuronal classes.
Mol Syst Biol. 2009;5:291. doi: 10.1038/msb.2009.46. Epub 2009 Jul 28.
5
Adaptive evolution of young gene duplicates in mammals.
Genome Res. 2009 May;19(5):859-67. doi: 10.1101/gr.085951.108.
6
Degree dependence in rates of transcription factor evolution explains the unusual structure of transcription networks.
Proc Biol Sci. 2009 Jul 7;276(1666):2493-501. doi: 10.1098/rspb.2009.0210. Epub 2009 Apr 8.
7
Evolutionary rates and centrality in the yeast gene regulatory network.
Genome Biol. 2009;10(4):R35. doi: 10.1186/gb-2009-10-4-r35. Epub 2009 Apr 9.
8
Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms.
Biochim Biophys Acta. 2009 Apr;1789(4):326-32. doi: 10.1016/j.bbagrm.2009.01.004. Epub 2009 Jan 22.
9
A census of human transcription factors: function, expression and evolution.
Nat Rev Genet. 2009 Apr;10(4):252-63. doi: 10.1038/nrg2538.
10
The life and death of gene families.
Bioessays. 2009 Jan;31(1):29-39. doi: 10.1002/bies.080085.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验