Suppr超能文献

糖脂肪酸酯抑制食源性病原体的生物膜形成。

Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria.

机构信息

Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa-shi, Japan.

出版信息

Int J Food Microbiol. 2010 Mar 31;138(1-2):176-80. doi: 10.1016/j.ijfoodmicro.2009.12.026. Epub 2010 Jan 7.

Abstract

Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001% (w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the S. aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01% (w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1% (w/w)) of the sugar fatty acid esters.

摘要

研究了食品添加剂对食源性致病菌生物膜形成的影响。在培养基中添加了 33 种潜在的食品添加剂和 3 种相关化合物,浓度从 0.001%到 0.1%(w/w),然后接种和培养 5 株生物膜形成菌,以评估生物膜形成。在测试的食品添加剂中,有 21 种对金黄色葡萄球菌和大肠杆菌的生物膜形成有抑制作用,特别是糖脂肪酸酯具有显著的抗生物膜活性。具有长链脂肪酸残基(C14-16)的糖脂肪酸酯在 0.001%(w/w)的浓度下发挥其抑制作用,但在如此低的浓度下不会影响细菌生长。糖脂肪酸酯的活性与脂肪酸残基链长的增加呈正相关。糖脂肪酸酯抑制金黄色葡萄球菌细胞初始附着在非生物表面上。具有长链脂肪酸残基(C14-16)的糖脂肪酸酯也能在 0.01%(w/w)抑制变形链球菌和单核细胞增生李斯特菌的生物膜形成,而铜绿假单胞菌的生物膜形成抑制则需要添加远高于 0.1%(w/w)的糖脂肪酸酯。

相似文献

1
Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria.
Int J Food Microbiol. 2010 Mar 31;138(1-2):176-80. doi: 10.1016/j.ijfoodmicro.2009.12.026. Epub 2010 Jan 7.
2
Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms.
Int J Food Microbiol. 2007 Aug 15;118(1):15-9. doi: 10.1016/j.ijfoodmicro.2007.05.008. Epub 2007 Jun 12.
3
6
Alkyl Ferulate Esters as Multifunctional Food Additives: Antibacterial Activity and Mode of Action against Escherichia coli in Vitro.
J Agric Food Chem. 2018 Nov 14;66(45):12088-12101. doi: 10.1021/acs.jafc.8b04429. Epub 2018 Nov 5.
7
Activity of Sodium Lauryl Sulfate, Rhamnolipids, and -Acetylcysteine Against Biofilms of Five Common Pathogens.
Microb Drug Resist. 2020 Mar;26(3):290-299. doi: 10.1089/mdr.2018.0385. Epub 2019 Jun 18.
9
Attenuation of biofilm and virulence factors of Pseudomonas aeruginosa by tetramethylpyrazine-gold nanoparticles.
Microb Pathog. 2024 Jun;191:106658. doi: 10.1016/j.micpath.2024.106658. Epub 2024 Apr 20.

引用本文的文献

1
Antibiofilm Effect of Cinnamaldehyde-Chitosan Nanoparticles against the Biofilm of .
Antibiotics (Basel). 2022 Oct 13;11(10):1403. doi: 10.3390/antibiotics11101403.
2
A Bioengineered Nisin Derivative, M21A, in Combination with Food Grade Additives Eradicates Biofilms of .
Front Microbiol. 2016 Nov 30;7:1939. doi: 10.3389/fmicb.2016.01939. eCollection 2016.
3
Unraveling microbial biofilms of importance for food microbiology.
Microb Ecol. 2014 Jul;68(1):35-46. doi: 10.1007/s00248-013-0347-4. Epub 2013 Dec 27.
4
Dietary fatty acids and immune response to food-borne bacterial infections.
Nutrients. 2013 May 22;5(5):1801-22. doi: 10.3390/nu5051801.
5
Small-molecule modulators of Listeria monocytogenes biofilm development.
Appl Environ Microbiol. 2012 Mar;78(5):1454-65. doi: 10.1128/AEM.07227-11. Epub 2011 Dec 22.

本文引用的文献

1
Microbial sciences: the superficial life of microbes.
Nature. 2006 May 18;441(7091):300-2. doi: 10.1038/441300a.
2
An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2833-8. doi: 10.1073/pnas.0511100103. Epub 2006 Feb 13.
3
Keeping their options open: acute versus persistent infections.
J Bacteriol. 2006 Feb;188(4):1211-7. doi: 10.1128/JB.188.4.1211-1217.2006.
4
Biofilms strike back.
Nat Biotechnol. 2005 Nov;23(11):1378-9. doi: 10.1038/nbt1105-1378.
5
Estimation of the biofilm formation of Escherichia coli K-12 by the cell number.
J Biosci Bioeng. 2005 Jan;99(1):78-80. doi: 10.1263/jbb.99.78.
6
A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance.
Nature. 2003 Nov 20;426(6964):306-10. doi: 10.1038/nature02122.
7
Bacterial communication: tiny teamwork.
Nature. 2003 Jul 10;424(6945):134. doi: 10.1038/424134a.
9
Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli.
J Bacteriol. 2002 Jan;184(1):290-301. doi: 10.1128/JB.184.1.290-301.2002.
10
Microbial biofilms: from ecology to molecular genetics.
Microbiol Mol Biol Rev. 2000 Dec;64(4):847-67. doi: 10.1128/MMBR.64.4.847-867.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验