Suppr超能文献

融合血管内超声的体内和体外数据进行斑块特征分析。

Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization.

机构信息

Department Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, Barcelona, Spain.

出版信息

Int J Cardiovasc Imaging. 2010 Oct;26(7):763-79. doi: 10.1007/s10554-009-9543-1. Epub 2009 Nov 29.

Abstract

Accurate detection of in-vivo vulnerable plaque in coronary arteries is still an open problem. Recent studies show that it is highly related to tissue structure and composition. Intravascular Ultrasound (IVUS) is a powerful imaging technique that gives a detailed cross-sectional image of the vessel, allowing to explore arteries morphology. IVUS data validation is usually performed by comparing post-mortem (in-vitro) IVUS data and corresponding histological analysis of the tissue. The main drawback of this method is the few number of available case studies and validated data due to the complex procedure of histological analysis of the tissue. On the other hand, IVUS data from in-vivo cases is easy to obtain but it can not be histologically validated. In this work, we propose to enhance the in-vitro training data set by selectively including examples from in-vivo plaques. For this purpose, a Sequential Floating Forward Selection method is reformulated in the context of plaque characterization. The enhanced classifier performance is validated on in-vitro data set, yielding an overall accuracy of 91.59% in discriminating among fibrotic, lipidic and calcified plaques, while reducing the gap between in-vivo and in-vitro data analysis. Experimental results suggest that the obtained classifier could be properly applied on in-vivo plaque characterization and also demonstrate that the common hypothesis of assuming the difference between in-vivo and in-vitro as negligible is incorrect.

摘要

目前,活体冠状动脉易损斑块的准确检测仍然是一个尚未解决的问题。最近的研究表明,易损斑块与组织的结构和成分密切相关。血管内超声(IVUS)是一种强大的成像技术,可以提供血管的详细横截面图像,从而可以对动脉形态进行研究。IVUS 数据的验证通常是通过将死后(离体)IVUS 数据与组织的相应组织学分析进行比较来完成的。由于组织学分析过程复杂,这种方法的主要缺点是可用病例研究和经过验证的数据数量很少。另一方面,活体病例的 IVUS 数据容易获得,但不能进行组织学验证。在这项工作中,我们提出通过选择性地包括来自活体斑块的示例来增强离体训练数据集。为此,在斑块特征描述的背景下重新制定了顺序浮动前向选择方法。通过在离体数据集上验证增强分类器的性能,在区分纤维性、脂质性和钙化性斑块方面,整体准确率达到 91.59%,同时缩小了体内和体外数据分析之间的差距。实验结果表明,所获得的分类器可以适当地应用于活体斑块特征描述,并且还证明了假设体内和体外之间的差异可以忽略不计的常见假设是不正确的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验