Suppr超能文献

与未知电子密度相对应的配体的辅助分配。

Assisted assignment of ligands corresponding to unknown electron density.

作者信息

Binkowski T Andrew, Cuff Marianne, Nocek Boguslaw, Chang Changsoo, Joachimiak Andrzej

机构信息

Midwest Center for Structural Genomics (MCSG), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA.

出版信息

J Struct Funct Genomics. 2010 Mar;11(1):21-30. doi: 10.1007/s10969-010-9078-7. Epub 2010 Jan 21.

Abstract

A semi-automated computational procedure to assist in the identification of bound ligands from unknown electron density has been developed. The atomic surface surrounding the density blob is compared to a library of three-dimensional ligand binding surfaces extracted from the Protein Data Bank (PDB). Ligands corresponding to surfaces which share physicochemical texture and geometric shape similarities are considered for assignment. The method is benchmarked against a set of well represented ligands from the PDB, in which we show that we can identify the correct ligand based on the corresponding binding surface. Finally, we apply the method during model building and refinement stages from structural genomics targets in which unknown density blobs were discovered. A semi-automated computational method is described which aims to assist crystallographers with assigning the identity of a ligand corresponding to unknown electron density. Using shape and physicochemical similarity assessments between the protein surface surrounding the density and a database of known ligand binding surfaces, a plausible list of candidate ligands are identified for consideration. The method is validated against highly observed ligands from the Protein Data Bank and results are shown from its use in a high-throughput structural genomics pipeline.

摘要

已开发出一种半自动计算程序,用于协助从未知电子密度中识别结合配体。将密度团块周围的原子表面与从蛋白质数据库(PDB)中提取的三维配体结合表面库进行比较。与具有物理化学纹理和几何形状相似性的表面相对应的配体被考虑用于分配。该方法以PDB中一组具有代表性的配体为基准进行测试,我们在其中表明可以基于相应的结合表面识别正确的配体。最后,我们在模型构建和精修阶段应用该方法,这些阶段来自发现未知密度团块的结构基因组学靶点。描述了一种半自动计算方法,旨在帮助晶体学家确定与未知电子密度相对应的配体的身份。通过对密度周围蛋白质表面与已知配体结合表面数据库之间的形状和物理化学相似性评估,确定了一份合理的候选配体列表以供考虑。该方法针对蛋白质数据库中高度常见的配体进行了验证,并展示了其在高通量结构基因组学流程中的应用结果。

相似文献

1
Assisted assignment of ligands corresponding to unknown electron density.与未知电子密度相对应的配体的辅助分配。
J Struct Funct Genomics. 2010 Mar;11(1):21-30. doi: 10.1007/s10969-010-9078-7. Epub 2010 Jan 21.
2
Ligand identification using electron-density map correlations.利用电子密度图相关性进行配体识别。
Acta Crystallogr D Biol Crystallogr. 2007 Jan;63(Pt 1):101-7. doi: 10.1107/S0907444906046233. Epub 2006 Dec 13.
5
FLEXR: automated multi-conformer model building using electron-density map sampling.FLEXR:基于电子密度图采样的自动化多构象模型构建。
Acta Crystallogr D Struct Biol. 2023 May 1;79(Pt 5):354-367. doi: 10.1107/S2059798323002498. Epub 2023 Apr 18.
10
Assessment of automatic ligand building in ARP/wARP.ARP/wARP中自动配体构建的评估。
Acta Crystallogr D Biol Crystallogr. 2007 Jan;63(Pt 1):108-17. doi: 10.1107/S0907444906023389. Epub 2006 Dec 13.

引用本文的文献

2
Protein Structure Inspired Drug Discovery.受蛋白质结构启发的药物发现
bioRxiv. 2024 May 20:2024.05.17.594634. doi: 10.1101/2024.05.17.594634.
5
The solvent component of macromolecular crystals.大分子晶体的溶剂成分。
Acta Crystallogr D Biol Crystallogr. 2015 May;71(Pt 5):1023-38. doi: 10.1107/S1399004715006045. Epub 2015 Apr 30.

本文引用的文献

2
Shape variation in protein binding pockets and their ligands.蛋白质结合口袋及其配体的形状变化。
J Mol Biol. 2007 Apr 20;368(1):283-301. doi: 10.1016/j.jmb.2007.01.086. Epub 2007 Feb 7.
3
Ligand identification using electron-density map correlations.利用电子密度图相关性进行配体识别。
Acta Crystallogr D Biol Crystallogr. 2007 Jan;63(Pt 1):101-7. doi: 10.1107/S0907444906046233. Epub 2006 Dec 13.
4
Automated ligand placement and refinement with a combined force field and shape potential.结合力场和形状势的自动配体放置与优化
Acta Crystallogr D Biol Crystallogr. 2006 Jul;62(Pt 7):741-9. doi: 10.1107/S0907444906016076. Epub 2006 Jun 20.
6
Conformational diversity of ligands bound to proteins.与蛋白质结合的配体的构象多样性。
J Mol Biol. 2006 Mar 3;356(4):928-44. doi: 10.1016/j.jmb.2005.12.012. Epub 2005 Dec 20.
9
ROCR: visualizing classifier performance in R.ROCR:在R语言中可视化分类器性能
Bioinformatics. 2005 Oct 15;21(20):3940-1. doi: 10.1093/bioinformatics/bti623. Epub 2005 Aug 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验