State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.
Inorg Chem. 2010 Feb 15;49(4):1449-57. doi: 10.1021/ic901682x.
Dy(3+)-doped gallium oxide hydroxides (GaOOH:Dy(3+)) with various morphologies (submicrospindles, submicroellipsoids, 3D hierarchical microspheres) were synthesized by a facile soft-chemical method. After annealing at 1000 degrees C, the GaOOH:Dy(3+) precursor was easily converted to beta-Ga(2)O(3):Dy(3+) phosphors which kept their original morphologies. The as-prepared GaOOH:Dy(3+) and beta-Ga(2)O(3):Dy(3+) products were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), low- to high-resolution transmission electron microscopy (TEM), selected area electron diffraction (SAED), photoluminescence (PL) spectra, cathodoluminescence (CL) spectra, and quantum yield (QY). With an increase in pH from 4 to 9, the morphology of GaOOH:Dy(3+) varied from submicrospindles to 3D hierarchical microspheres of self-assembled nanoparticles. A possible mechanism for the formation of various morphologies of GaOOH:Dy(3+) and beta-Ga(2)O(3):Dy(3+) was proposed. Under ultraviolet and low-voltage electron beam excitation, the pure beta-Ga(2)O(3) samples exhibit a blue emission with a maximum at 438 nm originating from the GaO(6) groups, while the beta-Ga(2)O(3):Dy(3+) samples show the characteristic emission of Dy(3+) corresponding to (4)F(9/2) --> (6)H(15/2, 13/2) transitions due to an efficient energy transfer from beta-Ga(2)O(3) to Dy(3+). A simple model was proposed to explain the energy transfer process and luminescence mechanism. Furthermore, the dependence of luminescence intensity on the morphology has been investigated in detail. Under 257 nm UV and electron beam excitation, the beta-Ga(2)O(3):Dy(3+) phosphor with a submicroellipsoid shape shows the highest relative emission intensity and quantum yield compared with other morphologies, and the obtained phosphors have potential applications in the areas of fluorescent lamps and field emission displays (FEDs).
通过一种简单的软化学方法合成了具有不同形态(亚微纺锤形、亚微椭球形、3D 分级微球)的 Dy(3+)-掺杂氧化镓氢氧化物(GaOOH:Dy(3+))。在 1000°C 下退火后,GaOOH:Dy(3+)前体很容易转化为β-Ga(2)O(3):Dy(3+)荧光粉,保持其原始形态。使用 X 射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、低分辨率到高分辨率透射电子显微镜(TEM)、选区电子衍射(SAED)、光致发光(PL)光谱、阴极发光(CL)光谱和量子产率(QY)对制备的 GaOOH:Dy(3+)和β-Ga(2)O(3):Dy(3+)产物进行了表征。随着 pH 值从 4 增加到 9,GaOOH:Dy(3+)的形态从亚微纺锤形变为自组装纳米粒子的 3D 分级微球形。提出了形成 GaOOH:Dy(3+)和β-Ga(2)O(3):Dy(3+)各种形态的可能机制。在紫外光和低电压电子束激发下,纯β-Ga(2)O(3)样品显示出最大位于 438nm 的蓝色发射,源自 GaO(6)基团,而β-Ga(2)O(3):Dy(3+)样品显示出 Dy(3+)的特征发射,对应于(4)F(9/2)→(6)H(15/2、13/2)跃迁,这是由于β-Ga(2)O(3)向 Dy(3+)的有效能量转移。提出了一个简单的模型来解释能量转移过程和发光机制。此外,详细研究了发光强度对形态的依赖性。在 257nm 紫外光和电子束激发下,与其他形态相比,亚微椭球形β-Ga(2)O(3):Dy(3+)荧光粉具有最高的相对发射强度和量子产率,所得荧光粉在荧光灯和场发射显示器(FED)等领域具有潜在应用。