Suppr超能文献

在非洲爪蟾胚胎中,Pax3 和 Pax7 基因的旁系同源物通过不同的分子机制合作进行神经和神经嵴的模式形成。

The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos.

机构信息

Institut Curie, Centre de Recherche, Centre Universitaire, F-91405 Orsay, France.

出版信息

Dev Biol. 2010 Apr 15;340(2):381-96. doi: 10.1016/j.ydbio.2010.01.022. Epub 2010 Jan 29.

Abstract

Pax3 and Pax7 paralogous genes have functionally diverged in vertebrate evolution, creating opportunity for a new distribution of roles between the two genes and the evolution of novel functions. Here we focus on the regulation and function of Pax7 in the brain and neural crest of amphibian embryos, which display a different pax7 expression pattern, compared to the other vertebrates already described. Pax7 expression is restricted to the midbrain, hindbrain and anterior spinal cord, and Pax7 activity is important for maintaining the fates of these regions, by restricting otx2 expression anteriorly. In contrast, pax3 displays broader expression along the entire neuraxis and Pax3 function is important for posterior brain patterning without acting on otx2 expression. Moreover, while both genes are essential for neural crest patterning, we show that they do so using two distinct mechanisms: Pax3 acts within the ectoderm which will be induced into neural crest, while Pax7 is essential for the inducing activity of the paraxial mesoderm towards the prospective neural crest.

摘要

Pax3 和 Pax7 这两个基因在脊椎动物进化过程中发生了功能分化,为这两个基因之间的角色重新分配和新功能的进化创造了机会。在这里,我们重点研究 Pax7 在两栖动物胚胎的大脑和神经嵴中的调控和功能,与其他已经描述过的脊椎动物相比,其 Pax7 表达模式不同。Pax7 的表达仅限于中脑、后脑和前脊髓,并且 Pax7 活性对于维持这些区域的命运非常重要,通过限制 otx2 在前部的表达。相比之下,pax3 在整个神经轴上的表达更为广泛,并且 Pax3 功能对于后脑部的模式形成非常重要,而不会影响 otx2 的表达。此外,尽管这两个基因对于神经嵴的模式形成都是必不可少的,但我们发现它们通过两种不同的机制起作用:Pax3 作用于将被诱导为神经嵴的外胚层,而 Pax7 对于来自轴旁中胚层的诱导活性对于预期的神经嵴至关重要。

相似文献

2
Pax3 and Pax7 expression and regulation in the avian embryo.
Anat Embryol (Berl). 2006 Aug;211(4):293-310. doi: 10.1007/s00429-006-0083-3. Epub 2006 Feb 28.
4
Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest.
Dev Biol. 2008 May 15;317(2):508-22. doi: 10.1016/j.ydbio.2008.02.058. Epub 2008 Mar 14.
5
The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border.
Mol Biol Cell. 2007 Jun;18(6):2192-202. doi: 10.1091/mbc.e06-11-1047. Epub 2007 Apr 4.
6
Neural crest determination by co-activation of Pax3 and Zic1 genes in Xenopus ectoderm.
Development. 2005 May;132(10):2355-63. doi: 10.1242/dev.01823. Epub 2005 Apr 20.
7
A divergent Tbx6-related gene and Tbx6 are both required for neural crest and intermediate mesoderm development in Xenopus.
Dev Biol. 2010 Apr 1;340(1):75-87. doi: 10.1016/j.ydbio.2010.01.013. Epub 2010 Jan 18.
8
SUMOylation of Pax7 is essential for neural crest and muscle development.
Cell Mol Life Sci. 2013 May;70(10):1793-806. doi: 10.1007/s00018-012-1220-1. Epub 2012 Dec 18.
9
Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction.
Dev Cell. 2005 Feb;8(2):167-78. doi: 10.1016/j.devcel.2004.12.017.
10
Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network.
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):155-60. doi: 10.1073/pnas.1010740107. Epub 2010 Dec 15.

引用本文的文献

2
Dyrk1a is required for craniofacial development in Xenopus laevis.
Dev Biol. 2024 Jul;511:63-75. doi: 10.1016/j.ydbio.2024.04.004. Epub 2024 Apr 15.
3
controls craniofacial osteoblast differentiation and mesenchymal proliferation from the neural crest.
bioRxiv. 2024 Jul 12:2024.03.13.584903. doi: 10.1101/2024.03.13.584903.
4
Pax3/7 regulates neural tube closure and patterning in a non-vertebrate chordate.
Front Cell Dev Biol. 2022 Sep 12;10:999511. doi: 10.3389/fcell.2022.999511. eCollection 2022.
5
Time to go: neural crest cell epithelial-to-mesenchymal transition.
Development. 2022 Aug 1;149(15). doi: 10.1242/dev.200712. Epub 2022 Jul 29.
8
Molecular and Functional Characterization of Neurogenin-2 Induced Human Sensory Neurons.
Front Cell Neurosci. 2020 Dec 4;14:600895. doi: 10.3389/fncel.2020.600895. eCollection 2020.
9
Insights Into the Early Gene Regulatory Network Controlling Neural Crest and Placode Fate Choices at the Neural Border.
Front Physiol. 2020 Nov 26;11:608812. doi: 10.3389/fphys.2020.608812. eCollection 2020.
10
Early expression of Tubulin Beta-III in avian cranial neural crest cells.
Gene Expr Patterns. 2019 Dec;34:119067. doi: 10.1016/j.gep.2019.119067. Epub 2019 Jul 29.

本文引用的文献

1
A rapid protocol for whole-mount in situ hybridization on Xenopus embryos.
CSH Protoc. 2007 Aug 1;2007:pdb.prot4809. doi: 10.1101/pdb.prot4809.
2
Dazap2 is required for FGF-mediated posterior neural patterning, independent of Wnt and Cdx function.
Dev Biol. 2009 Sep 1;333(1):26-36. doi: 10.1016/j.ydbio.2009.06.019. Epub 2009 Jun 22.
4
Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest.
Dev Biol. 2008 May 15;317(2):508-22. doi: 10.1016/j.ydbio.2008.02.058. Epub 2008 Mar 14.
6
The emerging biology of satellite cells and their therapeutic potential.
Trends Mol Med. 2008 Feb;14(2):82-91. doi: 10.1016/j.molmed.2007.12.004. Epub 2008 Jan 22.
7
Skeletal muscle satellite cells and adult myogenesis.
Curr Opin Cell Biol. 2007 Dec;19(6):628-33. doi: 10.1016/j.ceb.2007.09.012. Epub 2007 Nov 8.
8
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Mol Biol Evol. 2007 Aug;24(8):1596-9. doi: 10.1093/molbev/msm092. Epub 2007 May 7.
9
A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula.
Dev Biol. 2007 Apr 1;304(1):156-81. doi: 10.1016/j.ydbio.2006.12.029. Epub 2006 Dec 19.
10
Characterisation and expression of the paired box protein 7 (Pax7) gene in polymorphic Arctic charr (Salvelinus alpinus).
Comp Biochem Physiol B Biochem Mol Biol. 2006 Nov-Dec;145(3-4):371-83. doi: 10.1016/j.cbpb.2006.08.013. Epub 2006 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验