Suppr超能文献

青光眼风险指数:从彩色眼底图像自动检测青光眼。

Glaucoma risk index: automated glaucoma detection from color fundus images.

机构信息

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg, Germany.

出版信息

Med Image Anal. 2010 Jun;14(3):471-81. doi: 10.1016/j.media.2009.12.006. Epub 2010 Jan 4.

Abstract

Glaucoma as a neurodegeneration of the optic nerve is one of the most common causes of blindness. Because revitalization of the degenerated nerve fibers of the optic nerve is impossible early detection of the disease is essential. This can be supported by a robust and automated mass-screening. We propose a novel automated glaucoma detection system that operates on inexpensive to acquire and widely used digital color fundus images. After a glaucoma specific preprocessing, different generic feature types are compressed by an appearance-based dimension reduction technique. Subsequently, a probabilistic two-stage classification scheme combines these features types to extract the novel Glaucoma Risk Index (GRI) that shows a reasonable glaucoma detection performance. On a sample set of 575 fundus images a classification accuracy of 80% has been achieved in a 5-fold cross-validation setup. The GRI gains a competitive area under ROC (AUC) of 88% compared to the established topography-based glaucoma probability score of scanning laser tomography with AUC of 87%. The proposed color fundus image-based GRI achieves a competitive and reliable detection performance on a low-priced modality by the statistical analysis of entire images of the optic nerve head.

摘要

青光眼是视神经的一种神经退行性病变,是导致失明的最常见原因之一。由于视神经退化纤维无法再生,因此早期发现疾病至关重要。这可以通过强大的自动化大规模筛查来支持。我们提出了一种新颖的自动化青光眼检测系统,该系统基于廉价获取且广泛使用的数字彩色眼底图像运行。在进行特定于青光眼的预处理之后,不同的通用特征类型将通过基于外观的降维技术进行压缩。随后,概率两阶段分类方案结合这些特征类型来提取新的青光眼风险指数(GRI),该指数表现出合理的青光眼检测性能。在 575 张眼底图像的样本集中,在 5 倍交叉验证设置中实现了 80%的分类准确性。与基于扫描激光断层扫描的已建立的基于地形的青光眼概率评分相比,GRI 的 AUC 为 88%,获得了有竞争力的 ROC 下面积(AUC)。通过对视神经头的整个图像的统计分析,基于彩色眼底图像的 GRI 在廉价的模式下实现了有竞争力且可靠的检测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验