Milewski Robert, Jamiołkowski Jacek, Milewska Anna Justyna, Domitrz Jan, Szamatowicz Jacek, Wołczyński Sławomir
Zakład Statystyki i Informatyki Medycznej, Uniwersytet Medyczny w Białymstoku.
Ginekol Pol. 2009 Dec;80(12):900-6.
Prognosis of pregnancy for patients treated with IVF ICSI/ET methods, using artificial neural networks.
Retrospective study of 1007 cycles of infertility treatment of 899 patients of Department of Reproduction and Gynecological Endocrinology in Bialystok. The subjects were treated with IVF ICSI/ET method from August 2005 to September 2008.
Classifying artificial neural network is described in the paper Architecture of the network is three-layered perceptron consisting of 45 neurons in the input layer 14 neurons in the hidden layer and a single output neuron. The source data for the network are 36 variables. 24 of them are nominal variables and the rest are quantitative variables. Among non-pregnancy cases only 59 prognosis of the network were incorrect. The results of treatment were correctly forecast in 68.5% of cases. The pregnancy was accurately confirmed in 49.1% of cases and lack of pregnancy in 86.5% of cases.
Treatment of infertility with the use of in vitro fertilization methods continues to have too low efficiency per one treatment cycle. To improve this indicator it is necessary to find dependencies, which describe the model of IVF treatment. The application of advanced methods of bioinformatics allows to predict the result of the treatment more effectively With the help of artificial neural networks, we are able to forecast the failure of the treatment using IFV ICSI/ET procedure with almost 90% probability of certainty These possibilities can be used to predict negative cases.
利用人工神经网络研究接受体外受精-卵胞浆内单精子注射/胚胎移植(IVF-ICSI/ET)方法治疗的患者的妊娠预后。
对比亚韦斯托克生殖与妇科内分泌科899例患者的1007个不孕治疗周期进行回顾性研究。研究对象于2005年8月至2008年9月接受IVF-ICSI/ET方法治疗。
本文描述了分类人工神经网络。网络结构为三层感知器,由输入层的45个神经元、隐藏层的14个神经元和单个输出神经元组成。网络的源数据为36个变量。其中24个为名义变量,其余为定量变量。在未妊娠病例中,网络预测错误的仅59例。治疗结果在68.5%的病例中得到正确预测。妊娠在49.1%的病例中得到准确确认,未妊娠在86.5%的病例中得到准确确认。
使用体外受精方法治疗不孕症,每个治疗周期的效率仍然过低。为提高这一指标,有必要找出描述体外受精治疗模型的相关性。应用先进的生物信息学方法能够更有效地预测治疗结果。借助人工神经网络,我们能够以近90%的确定性概率预测IVF-ICSI/ET程序治疗的失败。这些可能性可用于预测阴性病例。