Nikolic Natacha, Butler James R A, Baglinière Jean-Luc, Laughton Robert, McMyn Iain A G, Chevalet Claude
Laboratoire de Génétique Cellulaire (UMR 444), INRA-ENVT, BP 52627, 31326 Castanet Tolosan Cedex, France.
Genet Res (Camb). 2009 Dec;91(6):395-412. doi: 10.1017/S0016672309990346.
Effective population size (Ne) is an important parameter in the conservation of genetic diversity. Comparative studies of empirical data that gauge the relative accuracy of Ne methods are limited, and a better understanding of the limitations and potential of Ne estimators is needed. This paper investigates genetic diversity and Ne in four populations of wild anadromous Atlantic salmon (Salmo salar L.) in Europe, from the Rivers Oir and Scorff (France) and Spey and Shin (Scotland). We aimed to understand present diversity and historical processes influencing current population structure. Our results showed high genetic diversity for all populations studied, despite their wide range of current effective sizes. To improve understanding of high genetic diversity observed in the populations with low effective size, we developed a model predicting present diversity as a function of past demographic history. This suggested that high genetic diversity could be explained by a bottleneck occurring within recent centuries rather than by gene flow. Previous studies have demonstrated the efficiency of coalescence models to estimate Ne. Using nine subsets from 37 microsatellite DNA markers from the four salmon populations, we compared three coalescence estimators based on single and dual samples. Comparing Ne estimates confirmed the efficiency of increasing the number and variability of microsatellite markers. This efficiency was more accentuated for the smaller populations. Analysis with low numbers of neutral markers revealed uneven distributions of allelic frequencies and overestimated short-term Ne. In addition, we found evidence of artificial stock enhancement using native and non-native origin. We propose estimates of Ne for the four populations, and their applications for salmon conservation and management are discussed.
有效种群大小(Ne)是遗传多样性保护中的一个重要参数。评估Ne方法相对准确性的实证数据比较研究有限,因此需要更好地了解Ne估计器的局限性和潜力。本文研究了欧洲四条野生溯河产卵大西洋鲑(Salmo salar L.)种群的遗传多样性和Ne,这些种群分别来自法国的瓦尔河和斯科尔夫河以及苏格兰的斯佩河和申河。我们旨在了解当前的多样性以及影响当前种群结构的历史过程。我们的结果表明,尽管所有研究种群的当前有效大小范围很广,但它们的遗传多样性都很高。为了更好地理解在有效大小较低的种群中观察到的高遗传多样性,我们开发了一个模型,将当前多样性预测为过去人口历史的函数。这表明高遗传多样性可以用近几个世纪内发生的瓶颈效应来解释,而不是基因流动。先前的研究已经证明了合并模型在估计Ne方面的有效性。我们使用来自四个鲑鱼种群的37个微卫星DNA标记中的九个子集,比较了基于单样本和双样本的三种合并估计器。比较Ne估计值证实了增加微卫星标记数量和变异性的有效性。对于较小的种群,这种有效性更为明显。使用少量中性标记进行分析时,发现等位基因频率分布不均,并且高估了短期Ne。此外,我们发现了使用本地和非本地来源进行人工放流的证据。我们提出了这四个种群的Ne估计值,并讨论了它们在鲑鱼保护和管理中的应用。