Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4951, USA.
Am J Kidney Dis. 2010 May;55(5):824-34. doi: 10.1053/j.ajkd.2009.11.009.
Urinary markers were tested as predictors of macroalbuminuria or microalbuminuria in patients with type 1 diabetes.
Nested case-control of participants in the Diabetes Control and Complications Trial (DCCT).
SETTING & PARTICIPANTS: 87 cases of microalbuminuria were matched to 174 controls in a 1:2 ratio, while 4 cases were matched to 4 controls in a 1:1 ratio, resulting in 91 cases and 178 controls for microalbuminuria. 55 cases of macroalbuminuria were matched to 110 controls in a 1:2 ratio. Controls were free of micro-/macroalbuminuria when their matching case first developed micro-/macroalbuminuria.
Urinary N-acetyl-beta-d-glucosaminidase (NAG), pentosidine, advanced glycation end product (AGE) fluorescence, and albumin excretion rate (AER).
Incident microalbuminuria (2 consecutive annual AERs > 40 but < or = 300 mg/d) or macroalbuminuria (AER > 300 mg/d).
Stored urine samples from DCCT entry and 1-9 years later when macro- or microalbuminuria occurred were measured for the lysosomal enzyme NAG and the AGE pentosidine and AGE fluorescence. AER and adjustor variables were obtained from the DCCT.
Submicroalbuminuric AER levels at baseline independently predicted microalbuminuria (adjusted OR, 1.83; P < 0.001) and macroalbuminuria (adjusted OR, 1.82; P < 0.001). Baseline NAG excretion independently predicted macroalbuminuria (adjusted OR, 2.26; P < 0.001) and microalbuminuria (adjusted OR, 1.86; P < 0.001). Baseline pentosidine excretion predicted macroalbuminuria (adjusted OR, 6.89; P = 0.002). Baseline AGE fluorescence predicted microalbuminuria (adjusted OR, 1.68; P = 0.02). However, adjusted for NAG excretion, pentosidine excretion and AGE fluorescence lost the predictive association with macroalbuminuria and microalbuminuria, respectively.
Use of angiotensin-converting enzyme inhibitors was not directly ascertained, although their use was proscribed during the DCCT.
Early in type 1 diabetes, repeated measurements of AER and urinary NAG excretion may identify individuals susceptible to future diabetic nephropathy. Combining the 2 markers may yield a better predictive model than either one alone. Renal tubule stress may be more severe, reflecting abnormal renal tubule processing of AGE-modified proteins, in individuals susceptible to diabetic nephropathy.
尿标志物被检测为 1 型糖尿病患者发生大量白蛋白尿或微量白蛋白尿的预测因子。
对糖尿病控制和并发症试验(DCCT)中的参与者进行嵌套病例对照研究。
87 例微量白蛋白尿与 174 例对照以 1:2 的比例匹配,4 例与 4 例对照以 1:1 的比例匹配,因此微量白蛋白尿组有 91 例和 178 例对照。55 例大量白蛋白尿与 110 例对照以 1:2 的比例匹配。当匹配的病例首次出现微量/大量白蛋白尿时,对照者无微量/大量白蛋白尿。
尿 N-乙酰-β-D-氨基葡萄糖苷酶(NAG)、戊糖、晚期糖基化终产物(AGE)荧光和白蛋白排泄率(AER)。
微量白蛋白尿(2 次连续年度 AER>40 但<或=300mg/d)或大量白蛋白尿(AER>300mg/d)的发生率。
在 DCCT 入组时和发生大量或微量白蛋白尿后 1-9 年存储的尿液样本,用于测量溶酶体酶 NAG 和 AGE 戊糖和 AGE 荧光。AER 和调整变量从 DCCT 获得。
基线时亚微量白蛋白尿 AER 水平独立预测微量白蛋白尿(调整后的比值比,1.83;P<0.001)和大量白蛋白尿(调整后的比值比,1.82;P<0.001)。基线 NAG 排泄独立预测大量白蛋白尿(调整后的比值比,2.26;P<0.001)和微量白蛋白尿(调整后的比值比,1.86;P<0.001)。基线戊糖排泄预测大量白蛋白尿(调整后的比值比,6.89;P=0.002)。基线 AGE 荧光预测微量白蛋白尿(调整后的比值比,1.68;P=0.02)。然而,当调整 NAG 排泄、戊糖排泄和 AGE 荧光时,它们分别失去了与大量白蛋白尿和微量白蛋白尿的预测关联。
未直接确定血管紧张素转换酶抑制剂的使用情况,尽管在 DCCT 期间禁止使用该药物。
在 1 型糖尿病早期,重复测量 AER 和尿 NAG 排泄量可能可以识别未来发生糖尿病肾病的个体。将这两个标志物结合起来可能比单独使用任何一个标志物都能获得更好的预测模型。在易患糖尿病肾病的个体中,肾小管应激可能更严重,反映了 AGE 修饰蛋白的异常肾小管处理。