Suppr超能文献

使用聚类算法识别行为中的原型组件。

Identifying prototypical components in behaviour using clustering algorithms.

机构信息

Neurobiology and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany.

出版信息

PLoS One. 2010 Feb 22;5(2):e9361. doi: 10.1371/journal.pone.0009361.

Abstract

Quantitative analysis of animal behaviour is a requirement to understand the task solving strategies of animals and the underlying control mechanisms. The identification of repeatedly occurring behavioural components is thereby a key element of a structured quantitative description. However, the complexity of most behaviours makes the identification of such behavioural components a challenging problem. We propose an automatic and objective approach for determining and evaluating prototypical behavioural components. Behavioural prototypes are identified using clustering algorithms and finally evaluated with respect to their ability to represent the whole behavioural data set. The prototypes allow for a meaningful segmentation of behavioural sequences. We applied our clustering approach to identify prototypical movements of the head of blowflies during cruising flight. The results confirm the previously established saccadic gaze strategy by the set of prototypes being divided into either predominantly translational or rotational movements, respectively. The prototypes reveal additional details about the saccadic and intersaccadic flight sections that could not be unravelled so far. Successful application of the proposed approach to behavioural data shows its ability to automatically identify prototypical behavioural components within a large and noisy database and to evaluate these with respect to their quality and stability. Hence, this approach might be applied to a broad range of behavioural and neural data obtained from different animals and in different contexts.

摘要

动物行为的定量分析是理解动物解决任务策略和潜在控制机制的要求。因此,反复出现的行为成分的识别是结构化定量描述的关键要素。然而,大多数行为的复杂性使得识别这种行为成分成为一个具有挑战性的问题。我们提出了一种自动和客观的方法来确定和评估典型的行为成分。使用聚类算法识别行为原型,然后根据它们表示整个行为数据集的能力对其进行评估。原型允许对行为序列进行有意义的分割。我们将我们的聚类方法应用于识别果蝇在巡航飞行中头部的典型运动。结果证实了先前建立的扫视眼策略,原型集分为主要是平移运动或旋转运动。原型揭示了扫视和扫视间飞行部分的其他细节,迄今为止还无法揭示这些细节。该方法在行为数据中的成功应用表明,它能够自动识别大型嘈杂数据库中的典型行为成分,并根据其质量和稳定性对其进行评估。因此,该方法可应用于从不同动物和不同环境中获得的广泛的行为和神经数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验