Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Santiago 7, Casilla 70.000, Chile.
Prog Neurobiol. 2010 Feb 9;90(2):176-89. doi: 10.1016/j.pneurobio.2009.01.005. Epub 2009 Jan 29.
The detailed anatomy of the monoamine pathways of the rat by the students of Nils-Ake Hillarp provided the basis for a neurocircuitry targeting pharmacology. Further progress was achieved by the introduction of 6-hydroxydopamine as a tool for performing specific lesions, leading to the first stereotaxic mapping of the monoamine pathways in the rat brain by Urban Ungerstedt at the Karolinska Institutet, Stockholm, Sweden. Unilateral intracerebral injections with 6-hydroxydopamine led to the proposal of 'Rotational Behaviour', as a classical model for screening drugs useful for alleviating Parkinson's disease and other neuropathologies. The direction of the rotational behaviour induced by drugs administrated to lesioned rats reveals their mechanisms of action on dopamine synapses, as demonstrated when rotational behaviour was combined with microdialysis. The model was useful for proposing a role of dopamine receptors in the gating of the flow of information through different efferent pathways of the basal ganglia. It is established now that the coupling of dopamine receptors is regulated by a number of proteins acting as GTPases, the regulators of G-protein signalling (RGS) family. More than 20 RGS proteins have been identified, organised into subfamilies based on structural features and specificity for different G-protein subunits. These protein subfamilies represent alternative pathways gating the flow of information generated in the basal ganglia. Microdialysis has been developed as a general tool for studying tissue and organ chemistry, leading to a truly translational venture as microdialysis is brought into clinical use, monitoring energy metabolism following global or focal ischemia in the neurosurgery and general medicine scenario.
学生尼尔斯-阿克·希拉普(Nils-Ake Hillarp)详细描述了大鼠单胺途径的解剖结构,为神经回路靶向药理学提供了基础。进一步的进展是通过引入 6-羟多巴胺(6-hydroxydopamine)作为进行特定损伤的工具来实现的,这导致了瑞典斯德哥尔摩卡罗林斯卡研究所的 Urban Ungerstedt 首次对大鼠大脑中的单胺途径进行立体定位映射。单侧脑内注射 6-羟多巴胺导致了“旋转行为”的提出,作为筛选用于缓解帕金森病和其他神经病理学的有用药物的经典模型。给予损伤大鼠的药物诱导的旋转行为的方向揭示了它们在多巴胺突触上的作用机制,当将旋转行为与微透析结合使用时证明了这一点。该模型对于提出多巴胺受体在基底神经节不同传出途径信息流的门控中的作用具有重要意义。现在已经确立,多巴胺受体的偶联受作为 GTP 酶的许多蛋白质调节,这些蛋白质是 G 蛋白信号转导(RGS)家族的调节剂。已经鉴定出超过 20 种 RGS 蛋白,根据结构特征和对不同 G 蛋白亚基的特异性组织成亚家族。这些蛋白质亚家族代表了门控在基底神经节中产生的信息流的替代途径。微透析已被开发为研究组织和器官化学的通用工具,随着微透析在神经外科和普通医学领域中用于临床监测,能量代谢在全球或局灶性缺血后,它成为了一项真正的转化研究。