Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense C, Denmark; Nanon A/S, 2605 Brøndby, Denmark.
J Microbiol Methods. 2010 May;81(2):135-40. doi: 10.1016/j.mimet.2010.02.009. Epub 2010 Feb 24.
We have established a simple flow chamber-based procedure which provides an accurate and reproducible way to measure the amount of biofilm formed on an implantable biomaterial surface. The method enables the side-by-side evaluation of different materials under hydrodynamic flow conditions similar to those found on an implanted device. We have used the method to evaluate the biofilm forming capacity of clinically isolated Escherichia coli on silicone rubber and on silicone rubber containing a hydrophilic coating. It was found that the surface chemistry influenced the colonization of the isolates very differently. In addition, the temperature was found to have a considerable influence upon the adhesion and biofilm forming capacity of some of the isolates, and that the influence of surface chemistry depended on temperature. Our results suggest that the step from using E. coli laboratory strains to clinical isolates entails a significant rise in complexity and yields results that cannot be generalized. The results should be valuable information for researchers working with pre-clinical evaluation of device-associated E. coli infections.
我们建立了一种简单的流室方法,该方法可提供一种准确且可重复的方法来测量植入式生物材料表面形成的生物膜的量。该方法可在类似于植入设备上发现的流体动力学条件下,对不同材料进行并排评估。我们已经使用该方法评估了临床分离的大肠杆菌在硅橡胶和含亲水涂层的硅橡胶上的生物膜形成能力。结果发现,表面化学性质对分离株的定植有非常不同的影响。此外,温度对某些分离株的粘附和生物膜形成能力有相当大的影响,而且表面化学性质的影响取决于温度。我们的结果表明,从使用大肠杆菌实验室菌株到临床分离株的步骤会导致复杂性显著增加,并且产生的结果无法概括。这些结果对于从事与设备相关的大肠杆菌感染的临床前评估的研究人员来说是有价值的信息。