Suppr超能文献

一种用于预测多组分系统界面结构的遗传算法。

A genetic algorithm for predicting the structures of interfaces in multicomponent systems.

机构信息

Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, UK.

出版信息

Nat Mater. 2010 May;9(5):418-22. doi: 10.1038/nmat2712. Epub 2010 Feb 28.

Abstract

Recent years have seen great advances in our ability to predict crystal structures from first principles. However, previous algorithms have focused on the prediction of bulk crystal structures, where the global minimum is the target. Here, we present a general atomistic approach to simulate in multicomponent systems the structures and free energies of grain boundaries and heterophase interfaces with fixed stoichiometric and non-stoichiometric compositions. The approach combines a new genetic algorithm using empirical interatomic potentials to explore the configurational phase space of boundaries, and thereafter refining structures and free energies with first-principles electronic structure methods. We introduce a structural order parameter to bias the genetic algorithm search away from the global minimum (which would be bulk crystal), while not favouring any particular structure types, unless they lower the energy. We demonstrate the power and efficiency of the algorithm by considering non-stoichiometric grain boundaries in a ternary oxide, SrTiO(3).

摘要

近年来,我们从第一性原理预测晶体结构的能力取得了重大进展。然而,以前的算法主要集中在预测体相晶体结构上,其中全局最小值是目标。在这里,我们提出了一种通用的原子方法,用于模拟具有固定化学计量和非化学计量组成的多组分系统中的晶界和异相界面的结构和自由能。该方法结合了一种新的遗传算法,使用经验原子间势来探索边界的构型相空间,然后使用第一性原理电子结构方法来细化结构和自由能。我们引入了一个结构有序参数,使遗传算法搜索偏离全局最小值(即体相晶体),而不偏向任何特定的结构类型,除非它们降低能量。我们通过考虑三元氧化物 SrTiO(3)中的非化学计量晶界来证明算法的强大功能和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验