Suppr超能文献

水平基因转移对静态环境中单细胞群体平均适合度的影响。

The influence of horizontal gene transfer on the mean fitness of unicellular populations in static environments.

机构信息

Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.

出版信息

Genetics. 2010 May;185(1):327-37. doi: 10.1534/genetics.109.113613. Epub 2010 Mar 1.

Abstract

Horizontal gene transfer (HGT) is believed to be a major source of genetic variation, particularly for prokaryotes. It is believed that horizontal gene transfer plays a major role in shaping bacterial genomes and is also believed to be responsible for the relatively rapid dissemination and acquisition of new, adaptive traits across bacterial strains. Despite the importance of horizontal gene transfer as a major source of genetic variation, the bulk of research on theoretical evolutionary dynamics and population genetics has focused on point mutations (sometimes coupled with gene duplication events) as the main engine of genomic change. Here, we seek to specifically model HGT processes in bacterial cells, by developing a mathematical model describing the influence that conjugation-mediated HGT has on the mutation-selection balance in an asexually reproducing population of unicellular, prokaryotic organisms. It is assumed that mutation-selection balance is reached in the presence of a fixed background concentration of antibiotic, to which the population must become resistant to survive. We find that HGT has a nontrivial effect on the mean fitness of the population. However, one of the central results that emerge from our analysis is that, at mutation-selection balance, conjugation-mediated HGT has a slightly deleterious effect on the mean fitness of a population. Therefore, we conclude that HGT does not confer a selection advantage in static environments. Rather, its advantage must lie in its ability to promote faster adaptation in dynamic environments, an interpretation that is consistent with the observation that HGT can be promoted by environmental stresses on a population.

摘要

水平基因转移(HGT)被认为是遗传变异的主要来源,特别是对于原核生物而言。人们认为水平基因转移在塑造细菌基因组方面起着重要作用,并且还被认为是导致细菌菌株中相对快速传播和获得新的适应性特征的原因。尽管水平基因转移作为遗传变异的主要来源非常重要,但理论进化动力学和群体遗传学的大部分研究都集中在点突变(有时与基因复制事件结合在一起)作为基因组变化的主要引擎上。在这里,我们通过开发一个数学模型来专门模拟细菌细胞中的 HGT 过程,该模型描述了接合介导的 HGT 对无性繁殖的单细胞原核生物群体中的突变-选择平衡的影响。假设在存在固定背景浓度抗生素的情况下达到了突变-选择平衡,种群必须对此产生抗性才能生存。我们发现 HGT 对种群的平均适合度有重大影响。但是,我们分析得出的一个中心结果是,在突变-选择平衡时,接合介导的 HGT 对种群的平均适合度具有轻微的有害影响。因此,我们得出结论,HGT 在静态环境中不能赋予选择优势。相反,它的优势必须在于它能够在动态环境中促进更快的适应,这种解释与 HGT 可以通过对种群的环境压力来促进的观察结果一致。

相似文献

1
The influence of horizontal gene transfer on the mean fitness of unicellular populations in static environments.
Genetics. 2010 May;185(1):327-37. doi: 10.1534/genetics.109.113613. Epub 2010 Mar 1.
2
Repression/depression of conjugative plasmids and their influence on the mutation-selection balance in static environments.
PLoS One. 2014 May 8;9(5):e96839. doi: 10.1371/journal.pone.0096839. eCollection 2014.
3
Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation.
Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26868-26875. doi: 10.1073/pnas.2005331117. Epub 2020 Oct 14.
4
Horizontal gene transfer dynamics and distribution of fitness effects during microbial in silico evolution.
BMC Bioinformatics. 2012 Jun 25;13 Suppl 10(Suppl 10):S13. doi: 10.1186/1471-2105-13-S10-S13.
5
Minor fitness costs in an experimental model of horizontal gene transfer in bacteria.
Mol Biol Evol. 2014 May;31(5):1220-7. doi: 10.1093/molbev/msu076. Epub 2014 Feb 17.
7
Horizontal gene transfer: building the web of life.
Nat Rev Genet. 2015 Aug;16(8):472-82. doi: 10.1038/nrg3962.
10
Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches.
FEMS Microbiol Rev. 2011 Sep;35(5):957-76. doi: 10.1111/j.1574-6976.2011.00292.x. Epub 2011 Jul 29.

引用本文的文献

1
Genomic and phenotypic insights into Serratia interaction with plants from an ecological perspective.
Braz J Microbiol. 2025 Jun;56(2):1219-1239. doi: 10.1007/s42770-025-01652-7. Epub 2025 Mar 25.
2
Horizontal gene transfer from genetically modified plants - Regulatory considerations.
Front Bioeng Biotechnol. 2022 Aug 31;10:971402. doi: 10.3389/fbioe.2022.971402. eCollection 2022.
3
CRISPR: a journey of gene-editing based medicine.
Genes Genomics. 2020 Dec;42(12):1369-1380. doi: 10.1007/s13258-020-01002-x. Epub 2020 Oct 22.
7
Horizontal gene transfer of Chlamydia: Novel insights from tree reconciliation.
PLoS One. 2018 Apr 5;13(4):e0195139. doi: 10.1371/journal.pone.0195139. eCollection 2018.
9
Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation.
Biophys J. 2016 Jan 5;110(1):258-68. doi: 10.1016/j.bpj.2015.11.033.
10
Repression/depression of conjugative plasmids and their influence on the mutation-selection balance in static environments.
PLoS One. 2014 May 8;9(5):e96839. doi: 10.1371/journal.pone.0096839. eCollection 2014.

本文引用的文献

1
Genome evolution and adaptation in a long-term experiment with Escherichia coli.
Nature. 2009 Oct 29;461(7268):1243-7. doi: 10.1038/nature08480. Epub 2009 Oct 18.
2
Phase diagrams of quasispecies theory with recombination and horizontal gene transfer.
Phys Rev Lett. 2007 Feb 2;98(5):058101. doi: 10.1103/PhysRevLett.98.058101. Epub 2007 Jan 29.
3
Horizontal gene transfer, genome innovation and evolution.
Nat Rev Microbiol. 2005 Sep;3(9):679-87. doi: 10.1038/nrmicro1204.
4
Recombination dramatically speeds up evolution of finite populations.
Phys Rev Lett. 2005 Mar 11;94(9):098102. doi: 10.1103/PhysRevLett.94.098102. Epub 2005 Mar 9.
5
SOS response promotes horizontal dissemination of antibiotic resistance genes.
Nature. 2004 Jan 1;427(6969):72-4. doi: 10.1038/nature02241. Epub 2003 Dec 21.
6
Horizontal gene transfer: a critical view.
Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9658-62. doi: 10.1073/pnas.1632870100. Epub 2003 Aug 5.
7
Stress-induced mutagenesis in bacteria.
Science. 2003 May 30;300(5624):1404-9. doi: 10.1126/science.1082240.
8
Ancient horizontal gene transfer.
Nat Rev Genet. 2003 Feb;4(2):121-32. doi: 10.1038/nrg1000.
9
Origin pairing ('handcuffing') as a mode of negative control of P1 plasmid copy number.
EMBO J. 2001 Dec 17;20(24):7323-32. doi: 10.1093/emboj/20.24.7323.
10
Natural conjugative plasmids induce bacterial biofilm development.
Nature. 2001 Jul 26;412(6845):442-5. doi: 10.1038/35086581.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验