Suppr超能文献

分析 KCNQ1 和 KCNE1 通道亚基的 C 端胞质域之间的相互作用。

Analysis of the interactions between the C-terminal cytoplasmic domains of KCNQ1 and KCNE1 channel subunits.

机构信息

Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

出版信息

Biochem J. 2010 Apr 28;428(1):75-84. doi: 10.1042/BJ20090977.

Abstract

Ion channel subunits encoded by KCNQ1 and KCNE1 produce the slowly activating K+ current (IKs) that plays a central role in myocardial repolarization. The KCNQ1 alpha-subunit and the KCNE1 beta-subunit assemble with their membrane-spanning segments interacting, resulting in transformation of channel activation kinetics. We recently reported a functional interaction involving C-terminal portions of the two subunits with ensuing regulation of channel deactivation. In the present study, we provide evidence characterizing a physical interaction between the KCNQ1-CT (KCNE1 C-terminus) and the KCNE1-CT (KCNE1 C-terminus). When expressed in cultured cells, the KCNE1-CT co-localized with KCNQ1, co-immunoprecipitated with KCNQ1 and perturbed deactivation kinetics of the KCNQ1 currents. Purified KCNQ1-CT and KCNE1-CT physically interacted in pull-down experiments, indicating a direct association. Deletion analysis of KCNQ1-CT indicated that the KCNE1-CT binds to a KCNQ1 region just after the last transmembrane segment, but N-terminal to the tetramerization domain. SPR (surface plasmon resonance) corroborated the pull-down results, showing that the most proximal region (KCNQ1 amino acids 349-438) contributed most to the bimolecular interaction with a dissociation constant of approximately 4 microM. LQT (long QT) mutants of the KCNE1-CT, D76N and W87F, retained binding to the KCNQ1-CT with comparable affinity, indicating that these disease-causing mutations do not alter channel behaviour by disruption of the association. Several LQT mutations involving the KCNQ1-CT, however, showed various effects on KCNQ1/KCNE1 association. Our results indicate that the KCNQ1-CT and the KCNE1-CT comprise an independent interaction domain that may play a role in IKs channel regulation that is potentially affected in some LQTS (LQT syndrome) mutations.

摘要

KCNQ1 和 KCNE1 编码的离子通道亚基产生缓慢激活的钾电流 (IKs),在心肌复极中起核心作用。KCNQ1 alpha 亚基和 KCNE1 beta 亚基的跨膜片段相互作用组装,导致通道激活动力学的转变。我们最近报道了一个涉及两个亚基的 C 末端部分的功能相互作用,随后调节通道失活。在本研究中,我们提供了特征化 KCNQ1-CT(KCNE1 C 末端)和 KCNE1-CT(KCNE1 C 末端)之间物理相互作用的证据。当在培养的细胞中表达时,KCNE1-CT 与 KCNQ1 共定位,与 KCNQ1 共免疫沉淀,并干扰 KCNQ1 电流的失活动力学。纯化的 KCNQ1-CT 和 KCNE1-CT 在下拉实验中物理相互作用,表明存在直接关联。KCNQ1-CT 的缺失分析表明,KCNE1-CT 结合到最后一个跨膜片段之后的 KCNQ1 区域,但位于四聚化结构域的 N 端。SPR(表面等离子体共振)证实了下拉结果,表明最接近的区域(KCNQ1 氨基酸 349-438)与 KCNE1-CT 的双分子相互作用贡献最大,解离常数约为 4 μM。KCNE1-CT 的 LQT(长 QT)突变体 D76N 和 W87F 保留与 KCNQ1-CT 的结合,亲和力相当,表明这些致病变异不会通过破坏关联来改变通道行为。然而,几个涉及 KCNQ1-CT 的 LQT 突变对 KCNQ1/KCNE1 关联表现出各种影响。我们的结果表明,KCNQ1-CT 和 KCNE1-CT 构成一个独立的相互作用域,可能在 IKs 通道调节中发挥作用,而某些 LQTS(长 QT 综合征)突变可能会影响该调节。

相似文献

2
Physical and functional interaction sites in cytoplasmic domains of KCNQ1 and KCNE1 channel subunits.
Am J Physiol Heart Circ Physiol. 2020 Feb 1;318(2):H212-H222. doi: 10.1152/ajpheart.00459.2019. Epub 2019 Dec 13.
3
Long QT mutations at the interface between KCNQ1 helix C and KCNE1 disrupt I(KS) regulation by PKA and PIP₂.
J Cell Sci. 2014 Sep 15;127(Pt 18):3943-55. doi: 10.1242/jcs.147033. Epub 2014 Jul 18.
4
KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel.
Channels (Austin). 2009 Jan-Feb;3(1):16-24. doi: 10.4161/chan.3.1.7387. Epub 2009 Jan 7.
5
Identification of a protein-protein interaction between KCNE1 and the activation gate machinery of KCNQ1.
J Gen Physiol. 2010 Jun;135(6):607-18. doi: 10.1085/jgp.200910386. Epub 2010 May 17.
6
Functional interactions between KCNE1 C-terminus and the KCNQ1 channel.
PLoS One. 2009;4(4):e5143. doi: 10.1371/journal.pone.0005143. Epub 2009 Apr 2.
7
Ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit.
Eur J Pharmacol. 2010 Jul 10;637(1-3):138-47. doi: 10.1016/j.ejphar.2010.04.001. Epub 2010 Apr 21.
8
Dysfunctional potassium channel subunit interaction as a novel mechanism of long QT syndrome.
Heart Rhythm. 2013 May;10(5):728-37. doi: 10.1016/j.hrthm.2012.12.033. Epub 2013 Jan 2.
9
Allosteric mechanism for KCNE1 modulation of KCNQ1 potassium channel activation.
Elife. 2020 Oct 23;9:e57680. doi: 10.7554/eLife.57680.
10
LQT1 mutations in KCNQ1 C-terminus assembly domain suppress IKs using different mechanisms.
Cardiovasc Res. 2014 Dec 1;104(3):501-11. doi: 10.1093/cvr/cvu231. Epub 2014 Oct 24.

引用本文的文献

2
Atypical KCNQ1/Kv7 channel function in a neonatal diabetes patient: Hypersecretion preceded the failure of pancreatic β-cells.
iScience. 2024 Jun 17;27(7):110291. doi: 10.1016/j.isci.2024.110291. eCollection 2024 Jul 19.
3
The genetics of drug-induced QT prolongation: evaluating the evidence for pharmacodynamic variants.
Pharmacogenomics. 2022 Jun;23(9):543-557. doi: 10.2217/pgs-2022-0027. Epub 2022 Jun 14.
4
Physical and functional interaction sites in cytoplasmic domains of KCNQ1 and KCNE1 channel subunits.
Am J Physiol Heart Circ Physiol. 2020 Feb 1;318(2):H212-H222. doi: 10.1152/ajpheart.00459.2019. Epub 2019 Dec 13.
5
A conserved arginine/lysine-based motif promotes ER export of KCNE1 and KCNE2 to regulate KCNQ1 channel activity.
Channels (Austin). 2019 Dec;13(1):483-497. doi: 10.1080/19336950.2019.1685626.
6
Upgraded molecular models of the human KCNQ1 potassium channel.
PLoS One. 2019 Sep 13;14(9):e0220415. doi: 10.1371/journal.pone.0220415. eCollection 2019.
7
The I Channel Response to cAMP Is Modulated by the KCNE1:KCNQ1 Stoichiometry.
Biophys J. 2018 Nov 6;115(9):1731-1740. doi: 10.1016/j.bpj.2018.09.018. Epub 2018 Sep 27.
8
Molecular Pathophysiology of Congenital Long QT Syndrome.
Physiol Rev. 2017 Jan;97(1):89-134. doi: 10.1152/physrev.00008.2016.
9
The C-terminal domain of Kv1.3 regulates functional interactions with the KCNE4 subunit.
J Cell Sci. 2016 Nov 15;129(22):4265-4277. doi: 10.1242/jcs.191650. Epub 2016 Oct 6.

本文引用的文献

1
Intracellular domains interactions and gated motions of I(KS) potassium channel subunits.
EMBO J. 2009 Jul 22;28(14):1994-2005. doi: 10.1038/emboj.2009.157. Epub 2009 Jun 11.
2
Functional interactions between KCNE1 C-terminus and the KCNQ1 channel.
PLoS One. 2009;4(4):e5143. doi: 10.1371/journal.pone.0005143. Epub 2009 Apr 2.
3
MinK-dependent internalization of the IKs potassium channel.
Cardiovasc Res. 2009 Jun 1;82(3):430-8. doi: 10.1093/cvr/cvp047. Epub 2009 Feb 7.
4
Location of KCNE1 relative to KCNQ1 in the I(KS) potassium channel by disulfide cross-linking of substituted cysteines.
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):743-8. doi: 10.1073/pnas.0811897106. Epub 2009 Jan 8.
5
KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel.
Channels (Austin). 2009 Jan-Feb;3(1):16-24. doi: 10.4161/chan.3.1.7387. Epub 2009 Jan 7.
6
Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel.
Biochemistry. 2008 Aug 5;47(31):7999-8006. doi: 10.1021/bi800875q. Epub 2008 Jul 9.
8
The KCNQ1 (Kv7.1) COOH terminus, a multitiered scaffold for subunit assembly and protein interaction.
J Biol Chem. 2008 Feb 29;283(9):5815-30. doi: 10.1074/jbc.M707541200. Epub 2007 Dec 29.
10
Structural insight into KCNQ (Kv7) channel assembly and channelopathy.
Neuron. 2007 Mar 1;53(5):663-75. doi: 10.1016/j.neuron.2007.02.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验