Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
Biochem J. 2010 Apr 28;428(1):75-84. doi: 10.1042/BJ20090977.
Ion channel subunits encoded by KCNQ1 and KCNE1 produce the slowly activating K+ current (IKs) that plays a central role in myocardial repolarization. The KCNQ1 alpha-subunit and the KCNE1 beta-subunit assemble with their membrane-spanning segments interacting, resulting in transformation of channel activation kinetics. We recently reported a functional interaction involving C-terminal portions of the two subunits with ensuing regulation of channel deactivation. In the present study, we provide evidence characterizing a physical interaction between the KCNQ1-CT (KCNE1 C-terminus) and the KCNE1-CT (KCNE1 C-terminus). When expressed in cultured cells, the KCNE1-CT co-localized with KCNQ1, co-immunoprecipitated with KCNQ1 and perturbed deactivation kinetics of the KCNQ1 currents. Purified KCNQ1-CT and KCNE1-CT physically interacted in pull-down experiments, indicating a direct association. Deletion analysis of KCNQ1-CT indicated that the KCNE1-CT binds to a KCNQ1 region just after the last transmembrane segment, but N-terminal to the tetramerization domain. SPR (surface plasmon resonance) corroborated the pull-down results, showing that the most proximal region (KCNQ1 amino acids 349-438) contributed most to the bimolecular interaction with a dissociation constant of approximately 4 microM. LQT (long QT) mutants of the KCNE1-CT, D76N and W87F, retained binding to the KCNQ1-CT with comparable affinity, indicating that these disease-causing mutations do not alter channel behaviour by disruption of the association. Several LQT mutations involving the KCNQ1-CT, however, showed various effects on KCNQ1/KCNE1 association. Our results indicate that the KCNQ1-CT and the KCNE1-CT comprise an independent interaction domain that may play a role in IKs channel regulation that is potentially affected in some LQTS (LQT syndrome) mutations.
KCNQ1 和 KCNE1 编码的离子通道亚基产生缓慢激活的钾电流 (IKs),在心肌复极中起核心作用。KCNQ1 alpha 亚基和 KCNE1 beta 亚基的跨膜片段相互作用组装,导致通道激活动力学的转变。我们最近报道了一个涉及两个亚基的 C 末端部分的功能相互作用,随后调节通道失活。在本研究中,我们提供了特征化 KCNQ1-CT(KCNE1 C 末端)和 KCNE1-CT(KCNE1 C 末端)之间物理相互作用的证据。当在培养的细胞中表达时,KCNE1-CT 与 KCNQ1 共定位,与 KCNQ1 共免疫沉淀,并干扰 KCNQ1 电流的失活动力学。纯化的 KCNQ1-CT 和 KCNE1-CT 在下拉实验中物理相互作用,表明存在直接关联。KCNQ1-CT 的缺失分析表明,KCNE1-CT 结合到最后一个跨膜片段之后的 KCNQ1 区域,但位于四聚化结构域的 N 端。SPR(表面等离子体共振)证实了下拉结果,表明最接近的区域(KCNQ1 氨基酸 349-438)与 KCNE1-CT 的双分子相互作用贡献最大,解离常数约为 4 μM。KCNE1-CT 的 LQT(长 QT)突变体 D76N 和 W87F 保留与 KCNQ1-CT 的结合,亲和力相当,表明这些致病变异不会通过破坏关联来改变通道行为。然而,几个涉及 KCNQ1-CT 的 LQT 突变对 KCNQ1/KCNE1 关联表现出各种影响。我们的结果表明,KCNQ1-CT 和 KCNE1-CT 构成一个独立的相互作用域,可能在 IKs 通道调节中发挥作用,而某些 LQTS(长 QT 综合征)突变可能会影响该调节。