Suppr超能文献

低蛋白饮食和维生素 D 诱导的大鼠肾髓质基底部基因表达的抑制性消减杂交分析。

Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base.

机构信息

Renal Division, Department of Medicine and.

出版信息

Physiol Genomics. 2010 May;41(3):203-11. doi: 10.1152/physiolgenomics.00129.2009. Epub 2010 Mar 2.

Abstract

Protein restriction and hypercalcemia result in a urinary concentrating defect in rats and humans. Previous tubular perfusion studies show that there is an increased active urea transport activity in the initial inner medullary (IM) collecting duct in low-protein diet (LPD) and vitamin D (Vit D) animal models. To investigate the possible mechanisms that cause the urinary concentrating defect and to clone the new active urea transporter, we employed a modified two-tester suppression subtractive hybridization (ttSSH) approach and examined gene expression induced by LPD and Vit D in kidney IM base. Approximately 600 clones from the subtracted library were randomly selected; 150 clones were further confirmed to be the true positive genes by slot blot hybridization with subtracted probes from LPD and Vit D and sent for DNA sequencing. We identified 10 channel/transporter genes that were upregulated in IM base in LPD and Vit D animal models; 8 were confirmed by real-time PCR. These genes include aquaporin 2 (AQP2), two-pore calcium channel protein 2, brain-specific organic cation transporter, Na(+)- and H(+)-coupled glutamine transporter, and solute carrier family 25. Nine genes are totally new, and twelve are uncharacterized hypothetical proteins. Among them, four genes were shown to be new transmembrane proteins as judged by Kyte-Doolittle hydrophobic plot analysis. ttSSH provides a useful method to identify new genes from two conditioned populations.

摘要

蛋白质限制和高钙血症导致大鼠和人类出现尿浓缩功能缺陷。先前的管状灌注研究表明,低蛋白饮食(LPD)和维生素 D(Vit D)动物模型中,初始内髓集合管(IM)的主动尿素转运活性增加。为了研究导致尿浓缩缺陷的可能机制并克隆新的主动尿素转运蛋白,我们采用改良的双测试剂抑制消减杂交(ttSSH)方法,在内髓基底部检查 LPD 和 Vit D 诱导的基因表达。从消减文库中随机选择了约 600 个克隆,通过与 LPD 和 Vit D 的消减探针进行斑点印迹杂交,进一步证实了 150 个克隆为真正的阳性基因,并进行 DNA 测序。我们在内髓基底部 LPD 和 Vit D 动物模型中鉴定出 10 个上调的通道/转运蛋白基因;其中 8 个通过实时 PCR 得到证实。这些基因包括水通道蛋白 2(AQP2)、双孔钙通道蛋白 2、脑特异性有机阳离子转运体、Na(+)-和 H(+)-偶联谷氨酰胺转运体和溶质载体家族 25。其中 9 个基因是全新的,12 个是未表征的假设蛋白。其中,根据 Kyte-Doolittle 疏水性图分析,有 4 个基因被判定为新的跨膜蛋白。ttSSH 为从两种条件群体中鉴定新基因提供了一种有用的方法。

相似文献

1
Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base.
Physiol Genomics. 2010 May;41(3):203-11. doi: 10.1152/physiolgenomics.00129.2009. Epub 2010 Mar 2.
2
Urea and NaCl regulate UT-A1 urea transporter in opposing directions via TonEBP pathway during osmotic diuresis.
Am J Physiol Renal Physiol. 2009 Jan;296(1):F67-77. doi: 10.1152/ajprenal.00143.2008. Epub 2008 Oct 22.
3
Impaired aquaporin and urea transporter expression in rats with adriamycin-induced nephrotic syndrome.
Kidney Int. 1998 May;53(5):1244-53. doi: 10.1046/j.1523-1755.1998.00878.x.
4
Aquaporin-2 and urea transporter-A1 are up-regulated in rats with type I diabetes mellitus.
Diabetologia. 2001 May;44(5):637-45. doi: 10.1007/s001250051671.
5
Urea transport in initial IMCD of rats fed a low-protein diet: functional properties and mRNA abundance.
Am J Physiol. 1995 Jun;268(6 Pt 2):F1218-23. doi: 10.1152/ajprenal.1995.268.6.F1218.
8
Upregulation of urea transporter UT-A2 and water channels AQP2 and AQP3 in mice lacking urea transporter UT-B.
J Am Soc Nephrol. 2004 May;15(5):1161-7. doi: 10.1097/01.asn.0000125617.19799.72.
9
Topographic distribution of aquaporin 2 mRNA in the kidney of dehydrated rats.
Exp Nephrol. 2000 Jan-Feb;8(1):28-36. doi: 10.1159/000063279.
10
Down-regulation of urea transporters in the renal inner medulla of lithium-fed rats.
Kidney Int. 2002 Mar;61(3):995-1002. doi: 10.1046/j.1523-1755.2002.00210.x.

引用本文的文献

1
Energy-Dependent Urea Transports in Mammals and their Functional Consequences.
Subcell Biochem. 2025;118:193-228. doi: 10.1007/978-981-96-6898-4_10.
2
CD4 and CD8 T-Cell-Specific DNA Cytosine Methylation Differences Associated With Obesity.
Obesity (Silver Spring). 2018 Aug;26(8):1312-1321. doi: 10.1002/oby.22225. Epub 2018 Jun 28.
3
Identification of a Novel UT-B Urea Transporter in Human Urothelial Cancer.
Front Physiol. 2017 Apr 28;8:245. doi: 10.3389/fphys.2017.00245. eCollection 2017.
4
RNA-seq analysis of glycosylation related gene expression in STZ-induced diabetic rat kidney inner medulla.
Front Physiol. 2015 Oct 1;6:274. doi: 10.3389/fphys.2015.00274. eCollection 2015.

本文引用的文献

1
Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F440-50. doi: 10.1152/ajprenal.90318.2008. Epub 2009 May 20.
2
NAADP mobilizes calcium from acidic organelles through two-pore channels.
Nature. 2009 May 28;459(7246):596-600. doi: 10.1038/nature08030. Epub 2009 Apr 22.
3
Calsyntenins mediate TGN exit of APP in a kinesin-1-dependent manner.
Traffic. 2009 May;10(5):572-89. doi: 10.1111/j.1600-0854.2009.00886.x. Epub 2009 Jan 24.
4
Mammalian OS-9 is upregulated in response to endoplasmic reticulum stress and facilitates ubiquitination of misfolded glycoproteins.
J Mol Biol. 2009 Jan 30;385(4):1032-42. doi: 10.1016/j.jmb.2008.11.045. Epub 2008 Nov 30.
5
MDM2 E3 ubiquitin ligase mediates UT-A1 urea transporter ubiquitination and degradation.
Am J Physiol Renal Physiol. 2008 Nov;295(5):F1528-34. doi: 10.1152/ajprenal.90482.2008. Epub 2008 Sep 10.
6
Altered aminergic neurotransmission in the brain of organic cation transporter 3-deficient mice.
J Neurochem. 2008 Aug;106(3):1471-82. doi: 10.1111/j.1471-4159.2008.05506.x. Epub 2008 May 30.
7
Kidney-specific expression of human organic cation transporter 2 (OCT2/SLC22A2) is regulated by DNA methylation.
Am J Physiol Renal Physiol. 2008 Jul;295(1):F165-70. doi: 10.1152/ajprenal.90257.2008. Epub 2008 May 28.
8
Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation.
Am J Physiol Renal Physiol. 2008 Jul;295(1):F295-9. doi: 10.1152/ajprenal.00102.2008. Epub 2008 May 21.
10
Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis.
Physiol Genomics. 2008 Feb 19;32(3):322-34. doi: 10.1152/physiolgenomics.00160.2007. Epub 2007 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验