Suppr超能文献

如何量化混杂的程度。

On quantifying the magnitude of confounding.

机构信息

Vaccine and Infectious Disease Institute and Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North M2-C200, Seattle, WA 98109, USA.

出版信息

Biostatistics. 2010 Jul;11(3):572-82. doi: 10.1093/biostatistics/kxq007. Epub 2010 Mar 4.

Abstract

When estimating the association between an exposure and outcome, a simple approach to quantifying the amount of confounding by a factor, Z, is to compare estimates of the exposure-outcome association with and without adjustment for Z. This approach is widely believed to be problematic due to the nonlinearity of some exposure-effect measures. When the expected value of the outcome is modeled as a nonlinear function of the exposure, the adjusted and unadjusted exposure effects can differ even in the absence of confounding (Greenland , Robins, and Pearl, 1999); we call this the nonlinearity effect. In this paper, we propose a corrected measure of confounding that does not include the nonlinearity effect. The performances of the simple and corrected estimates of confounding are assessed in simulations and illustrated using a study of risk factors for low birth-weight infants. We conclude that the simple estimate of confounding is adequate or even preferred in settings where the nonlinearity effect is very small. In settings with a sizable nonlinearity effect, the corrected estimate of confounding has improved performance.

摘要

当估计暴露与结局之间的关联时,一种简单的方法是通过比较是否调整 Z 因素来量化其对混杂因素的影响程度。由于一些暴露效应度量的非线性,这种方法被广泛认为存在问题。当结局的期望值被建模为暴露的非线性函数时,即使不存在混杂因素,调整和未调整的暴露效应也可能不同(Greenland、Robins 和 Pearl,1999);我们称之为非线性效应。在本文中,我们提出了一种纠正混杂因素的方法,该方法不包括非线性效应。在模拟中评估了简单和校正混杂因素估计的性能,并使用低出生体重婴儿危险因素的研究进行了说明。我们得出的结论是,在非线性效应非常小的情况下,简单的混杂因素估计是足够的,甚至是首选的。在存在较大非线性效应的情况下,校正的混杂因素估计具有更好的性能。

相似文献

1
On quantifying the magnitude of confounding.
Biostatistics. 2010 Jul;11(3):572-82. doi: 10.1093/biostatistics/kxq007. Epub 2010 Mar 4.
3
Low birthweight, preterm births and intrauterine growth retardation in relation to maternal smoking.
Paediatr Perinat Epidemiol. 1997 Apr;11(2):140-51. doi: 10.1046/j.1365-3016.1997.d01-17.x.
4
The association between maternal HIV infection and perinatal outcome: a systematic review of the literature and meta-analysis.
Br J Obstet Gynaecol. 1998 Aug;105(8):836-48. doi: 10.1111/j.1471-0528.1998.tb10227.x.
5
Z-scores and the birthweight paradox.
Paediatr Perinat Epidemiol. 2009 Sep;23(5):403-13. doi: 10.1111/j.1365-3016.2009.01054.x.
6
Potential confounding by exposure history and prior outcomes: an example from perinatal epidemiology.
Epidemiology. 2007 Sep;18(5):544-51. doi: 10.1097/ede.0b013e31812001e6.
8
Maternal prescribed opioid analgesic use during pregnancy and associations with adverse birth outcomes: A population-based study.
PLoS Med. 2019 Dec 2;16(12):e1002980. doi: 10.1371/journal.pmed.1002980. eCollection 2019 Dec.
9
Using propensity score modeling to minimize the influence of confounding risks related to prenatal tobacco exposure.
Nicotine Tob Res. 2010 Dec;12(12):1211-9. doi: 10.1093/ntr/ntq170. Epub 2010 Oct 28.
10

引用本文的文献

1
Potential causal associations of long-term exposure to PM constituents and all-cause mortality: Evidence from the Pearl River Cohort study.
Ecotoxicol Environ Saf. 2025 Feb;291:117897. doi: 10.1016/j.ecoenv.2025.117897. Epub 2025 Feb 14.
2
Why You Should Not Estimate Mediated Effects Using the Difference-in-Coefficients Method When the Outcome is Binary.
Multivariate Behav Res. 2025 Mar-Apr;60(2):296-304. doi: 10.1080/00273171.2024.2418515. Epub 2024 Oct 29.
3
unmconf : an R package for Bayesian regression with unmeasured confounders.
BMC Med Res Methodol. 2024 Sep 7;24(1):195. doi: 10.1186/s12874-024-02322-2.
4
Estimation of the causal effect of sex on neonatal intensive care unit outcomes among very low birth weight infants.
J Perinatol. 2024 Jun;44(6):844-850. doi: 10.1038/s41372-024-01989-1. Epub 2024 May 6.
5
Historical Redlining, Persistent Mortgage Discrimination, and Race in Breast Cancer Outcomes.
JAMA Netw Open. 2024 Feb 5;7(2):e2356879. doi: 10.1001/jamanetworkopen.2023.56879.
7
Parametric G-computation for compatible indirect treatment comparisons with limited individual patient data.
Res Synth Methods. 2022 Nov;13(6):716-744. doi: 10.1002/jrsm.1565. Epub 2022 May 16.
8
Noncollapsibility and its role in quantifying confounding bias in logistic regression.
BMC Med Res Methodol. 2021 Jul 5;21(1):136. doi: 10.1186/s12874-021-01316-8.
9
Aorto-Iliac Artery Calcification and Graft Outcomes in Kidney Transplant Recipients.
J Clin Med. 2021 Jan 17;10(2):325. doi: 10.3390/jcm10020325.

本文引用的文献

1
A statistical test for the equality of differently adjusted incidence rate ratios.
Am J Epidemiol. 2008 Mar 1;167(5):517-22. doi: 10.1093/aje/kwm357. Epub 2008 Jan 29.
2
Estimating causal effects from epidemiological data.
J Epidemiol Community Health. 2006 Jul;60(7):578-86. doi: 10.1136/jech.2004.029496.
3
A definition of causal effect for epidemiological research.
J Epidemiol Community Health. 2004 Apr;58(4):265-71. doi: 10.1136/jech.2002.006361.
4
Marginal structural models as a tool for standardization.
Epidemiology. 2003 Nov;14(6):680-6. doi: 10.1097/01.EDE.0000081989.82616.7d.
6
Quantifying and reporting uncertainty from systematic errors.
Epidemiology. 2003 Jul;14(4):459-66. doi: 10.1097/01.ede.0000072106.65262.ae.
7
Estimating causal effects.
Int J Epidemiol. 2002 Apr;31(2):422-9.
8
Sensitivity analysis, Monte Carlo risk analysis, and Bayesian uncertainty assessment.
Risk Anal. 2001 Aug;21(4):579-83. doi: 10.1111/0272-4332.214136.
9
Confounding in health research.
Annu Rev Public Health. 2001;22:189-212. doi: 10.1146/annurev.publhealth.22.1.189.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验