Suppr超能文献

用于研究双语语言神经组织的语义模型。

A semantic model to study neural organization of language in bilingualism.

机构信息

Department of Electronics, Computer Science and Systems, University of Bologna, Viale Risorgimento 2, I40136 Bologna, Italy.

出版信息

Comput Intell Neurosci. 2010;2010:350269. doi: 10.1155/2010/350269. Epub 2010 Mar 1.

Abstract

A neural network model of object semantic representation is used to simulate learning of new words from a foreign language. The network consists of feature areas, devoted to description of object properties, and a lexical area, devoted to words representation. Neurons in the feature areas are implemented as Wilson-Cowan oscillators, to allow segmentation of different simultaneous objects via gamma-band synchronization. Excitatory synapses among neurons in the feature and lexical areas are learned, during a training phase, via a Hebbian rule. In this work, we first assume that some words in the first language (L1) and the corresponding object representations are initially learned during a preliminary training phase. Subsequently, second-language (L2) words are learned by simultaneously presenting the new word together with the L1 one. A competitive mechanism between the two words is also implemented by the use of inhibitory interneurons. Simulations show that, after a weak training, the L2 word allows retrieval of the object properties but requires engagement of the first language. Conversely, after a prolonged training, the L2 word becomes able to retrieve object per se. In this case, a conflict between words can occur, requiring a higher-level decision mechanism.

摘要

使用对象语义表示的神经网络模型来模拟从外语学习新单词。该网络由特征区域组成,用于描述对象属性,以及词汇区域,用于表示单词。特征区域中的神经元实现为威尔逊-考恩振荡器,以通过伽马带同步对不同的同时对象进行分段。在训练阶段,通过赫布规则学习特征和词汇区域中神经元之间的兴奋性突触。在这项工作中,我们首先假设在初步训练阶段已经学习了第一语言 (L1) 中的一些单词和相应的对象表示。随后,通过同时呈现新单词和 L1 单词来学习第二语言 (L2) 单词。还通过使用抑制性中间神经元来实现两个单词之间的竞争机制。模拟表明,经过弱训练后,L2 单词允许检索对象属性,但需要使用第一语言。相反,经过长时间训练后,L2 单词能够自行检索对象。在这种情况下,可能会发生单词之间的冲突,需要更高层次的决策机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957a/2830573/5acb168f91f1/CIN2010-350269.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验