Suppr超能文献

一种用于病例对照研究分析中建模时变暴露的加权 Cox 模型。

A weighted Cox model for modelling time-dependent exposures in the analysis of case-control studies.

机构信息

Department of Social and Preventive Medicine, University of Montreal, Montreal, Canada.

出版信息

Stat Med. 2010 Mar 30;29(7-8):839-50. doi: 10.1002/sim.3764.

Abstract

Many exposures investigated in epidemiological case-control studies may vary over time. The effects of these exposures are usually estimated using logistic regression, which does not directly account for changes in covariate values over time within individuals. By contrast, the Cox model with time-dependent covariates directly accounts for these changes over time. However, the over-sampling of cases in case-control studies, relative to controls, requires manipulating the risk sets in the Cox partial likelihood. A previous study showed that simple inclusion or exclusion of future cases in each risk set induces an under- or over-estimation bias in the regression parameters, respectively. We investigate the performance of a weighted Cox model that weights subjects according to age-conditional probabilities of developing the disease of interest in the source population. In a simulation study, the lifetime experience of a source population is first generated and a case-control study is then simulated within each population. Different characteristics of exposure are generated, including time-varying intensity. The results show that the estimates from the weighted Cox model are much less biased than the Cox models that simply include or exclude future cases, and are superior to logistic regression estimates in terms of bias and mean-squared error. An application to frequency-matched population-based case-control data on lung cancer illustrates similar differences in the estimated effects of different smoking variables. The investigated weighted Cox model is a potential alternative method to analyse matched or unmatched population-based case-control studies with time-dependent exposures.

摘要

许多在流行病学病例对照研究中调查的暴露因素可能随时间而变化。这些暴露因素的影响通常使用逻辑回归进行估计,逻辑回归并不能直接考虑个体内部随时间变化的协变量值的变化。相比之下,具有时间依赖性协变量的 Cox 模型可以直接考虑这些随时间的变化。然而,病例对照研究中病例相对于对照的过度抽样,需要在 Cox 部分似然法中操纵风险集。先前的一项研究表明,在每个风险集中简单地包含或排除未来的病例,分别会导致回归参数的低估或高估偏差。我们研究了一种加权 Cox 模型的性能,该模型根据目标人群中发病的年龄条件概率对受试者进行加权。在一项模拟研究中,首先生成源人群的终生经历,然后在每个人群中模拟病例对照研究。生成了不同特征的暴露因素,包括随时间变化的强度。结果表明,加权 Cox 模型的估计值比简单地包含或排除未来病例的 Cox 模型的估计值偏差小得多,并且在偏差和均方误差方面优于逻辑回归估计值。对肺癌的频数匹配基于人群的病例对照数据的应用说明了不同吸烟变量的估计效果存在类似的差异。所研究的加权 Cox 模型是分析具有时间依赖性暴露的匹配或不匹配基于人群的病例对照研究的一种潜在替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验