Suppr超能文献

柔性流形嵌入:一种半监督和无监督降维的框架。

Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction.

机构信息

School of Computer Engineering, Nanyang Technological University, 639798 Singapore.

出版信息

IEEE Trans Image Process. 2010 Jul;19(7):1921-32. doi: 10.1109/TIP.2010.2044958. Epub 2010 Mar 8.

Abstract

We propose a unified manifold learning framework for semi-supervised and unsupervised dimension reduction by employing a simple but effective linear regression function to map the new data points. For semi-supervised dimension reduction, we aim to find the optimal prediction labels F for all the training samples X, the linear regression function h(X) and the regression residue F(0) = F - h(X) simultaneously. Our new objective function integrates two terms related to label fitness and manifold smoothness as well as a flexible penalty term defined on the residue F(0). Our Semi-Supervised learning framework, referred to as flexible manifold embedding (FME), can effectively utilize label information from labeled data as well as a manifold structure from both labeled and unlabeled data. By modeling the mismatch between h(X) and F, we show that FME relaxes the hard linear constraint F = h(X) in manifold regularization (MR), making it better cope with the data sampled from a nonlinear manifold. In addition, we propose a simplified version (referred to as FME/U) for unsupervised dimension reduction. We also show that our proposed framework provides a unified view to explain and understand many semi-supervised, supervised and unsupervised dimension reduction techniques. Comprehensive experiments on several benchmark databases demonstrate the significant improvement over existing dimension reduction algorithms.

摘要

我们提出了一种统一的流形学习框架,用于半监督和无监督降维,通过采用简单而有效的线性回归函数来映射新的数据点。对于半监督降维,我们旨在为所有训练样本 X 找到最佳预测标签 F,同时找到线性回归函数 h(X) 和回归残差 F(0) = F - h(X)。我们的新目标函数集成了与标签拟合度和流形平滑度相关的两个项,以及残差 F(0) 上定义的灵活惩罚项。我们的半监督学习框架称为灵活流形嵌入(FME),可以有效地利用来自有标签数据的标签信息以及来自有标签和无标签数据的流形结构。通过对 h(X) 和 F 之间的不匹配进行建模,我们表明 FME 在流形正则化(MR)中放松了硬线性约束 F = h(X),从而使其更好地应对来自非线性流形的数据采样。此外,我们还提出了一种用于无监督降维的简化版本(称为 FME/U)。我们还表明,我们提出的框架提供了一种统一的观点,可以解释和理解许多半监督、监督和无监督降维技术。在几个基准数据库上的综合实验表明,与现有的降维算法相比,我们的框架有显著的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验