Department of Epidemiology, Michigan State University, East Lansing, MI 48824, USA.
J Nutr Biochem. 2010 Jul;21(7):561-72. doi: 10.1016/j.jnutbio.2009.11.007. Epub 2010 Mar 16.
Over the past 2 decades, there have been revolutionary developments in life science technologies characterized by high throughput, high efficiency, and rapid computation. Nutritionists now have the advanced methodologies for the analysis of DNA, RNA, protein, low-molecular-weight metabolites, as well as access to bioinformatics databases. Statistics, which can be defined as the process of making scientific inferences from data that contain variability, has historically played an integral role in advancing nutritional sciences. Currently, in the era of systems biology, statistics has become an increasingly important tool to quantitatively analyze information about biological macromolecules. This article describes general terms used in statistical analysis of large, complex experimental data. These terms include experimental design, power analysis, sample size calculation, and experimental errors (Type I and II errors) for nutritional studies at population, tissue, cellular, and molecular levels. In addition, we highlighted various sources of experimental variations in studies involving microarray gene expression, real-time polymerase chain reaction, proteomics, and other bioinformatics technologies. Moreover, we provided guidelines for nutritionists and other biomedical scientists to plan and conduct studies and to analyze the complex data. Appropriate statistical analyses are expected to make an important contribution to solving major nutrition-associated problems in humans and animals (including obesity, diabetes, cardiovascular disease, cancer, ageing, and intrauterine growth retardation).
在过去的 20 年中,生命科学技术发生了革命性的发展,其特点是高通量、高效率和快速计算。营养学家现在拥有用于分析 DNA、RNA、蛋白质、低分子量代谢物的先进方法,并且可以访问生物信息学数据库。统计学可以定义为从包含变异性的数据中进行科学推断的过程,它在推进营养科学方面一直发挥着重要作用。目前,在系统生物学时代,统计学已成为定量分析生物大分子信息的重要工具。本文介绍了用于分析大型复杂实验数据的统计分析中的常用术语。这些术语包括群体、组织、细胞和分子水平的营养研究中的实验设计、功效分析、样本量计算和实验误差(I 型和 II 型错误)。此外,我们还强调了涉及微阵列基因表达、实时聚合酶链反应、蛋白质组学和其他生物信息学技术的研究中各种实验变异性的来源。此外,我们为营养学家和其他生物医学科学家提供了计划和进行研究以及分析复杂数据的指南。适当的统计分析有望为解决人类和动物(包括肥胖、糖尿病、心血管疾病、癌症、衰老和宫内发育迟缓)与营养相关的重大问题做出重要贡献。