Suppr超能文献

在人胚胎干细胞来源的神经干细胞中抑制 Notch 信号转导可延迟 G1/S 期转变,并在体内外加速神经元分化。

Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo.

机构信息

Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany.

出版信息

Stem Cells. 2010 May;28(5):955-64. doi: 10.1002/stem.408.

Abstract

The controlled in vitro differentiation of human embryonic stem cells (hESCs) and other pluripotent stem cells provides interesting prospects for generating large numbers of human neurons for a variety of biomedical applications. A major bottleneck associated with this approach is the long time required for hESC-derived neural cells to give rise to mature neuronal progeny. In the developing vertebrate nervous system, Notch signaling represents a key regulator of neural stem cell (NSC) maintenance. Here, we set out to explore whether this signaling pathway can be exploited to modulate the differentiation of hESC-derived NSCs (hESNSCs). We assessed the expression of Notch pathway components in hESNSCs and demonstrate that Notch signaling is active under self-renewing culture conditions. Inhibition of Notch activity by the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) in hESNSCs affects the expression of human homologues of known targets of Notch and of several cell cycle regulators. Furthermore, DAPT-mediated Notch inhibition delays G1/S-phase transition and commits hESNSCs to neurogenesis. Combined with growth factor withdrawal, inhibition of Notch signaling results in a marked acceleration of differentiation, thereby shortening the time required for the generation of electrophysiologically active hESNSC-derived neurons. This effect can be exploited for neural cell transplantation, where transient Notch inhibition before grafting suffices to promote the onset of neuronal differentiation of hESNSCs in the host tissue. Thus, interference with Notch signaling provides a tool for controlling human NSC differentiation both in vitro and in vivo.

摘要

人胚胎干细胞(hESC)和其他多能干细胞的体外控制分化为各种生物医学应用提供了生成大量人类神经元的有趣前景。与这种方法相关的一个主要瓶颈是,hESC 来源的神经细胞需要很长时间才能产生成熟的神经元前体。在脊椎动物发育的神经系统中,Notch 信号代表神经干细胞(NSC)维持的关键调节剂。在这里,我们着手探索这种信号通路是否可以被用来调节 hESC 来源的 NSCs(hESNSCs)的分化。我们评估了 hESNSCs 中 Notch 途径成分的表达,并证明 Notch 信号在自我更新培养条件下是活跃的。在 hESNSCs 中,γ-分泌酶抑制剂 N-[N-(3,5-二氟苯乙酰基)-L-丙氨酰]-S-苯甘氨酸叔丁酯(DAPT)抑制 Notch 活性会影响 Notch 的已知靶标和几个细胞周期调节剂的人同源物的表达。此外,DAPT 介导的 Notch 抑制延迟 G1/S 期转变并促使 hESNSCs 向神经发生。与生长因子撤离相结合,抑制 Notch 信号导致分化明显加速,从而缩短了产生电生理活性 hESNSC 来源神经元所需的时间。这种效应可用于神经细胞移植,其中在移植前短暂抑制 Notch 足以促进宿主组织中 hESNSC 的神经元分化的开始。因此,干扰 Notch 信号提供了一种在体外和体内控制人类 NSC 分化的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验