Suppr超能文献

肾上腺素受体在新纹状体神经元中多巴胺/DARPP-32 信号转导中的作用。

Role of adrenoceptors in the regulation of dopamine/DARPP-32 signaling in neostriatal neurons.

机构信息

Department of Anesthesiology, Kurume University School of Medicine, Kurume, Fukuoka, Japan.

出版信息

J Neurochem. 2010 May;113(4):1046-59. doi: 10.1111/j.1471-4159.2010.06668.x. Epub 2010 Mar 4.

Abstract

Studies in animal models of Parkinson's disease have revealed that degeneration of noradrenaline neurons is involved in the motor deficits. Several types of adrenoceptors are highly expressed in neostriatal neurons. However, the selective actions of these receptors on striatal signaling pathways have not been characterized. In this study, we investigated the role of adrenoceptors in the regulation of dopamine/dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-32) signaling by analyzing DARPP-32 phosphorylation at Thr34 [protein kinase A (PKA)-site] in mouse neostriatal slices. Activation of beta(1)-adrenoceptors induced a rapid and transient increase in DARPP-32 phosphorylation. Activation of alpha(2)-adrenoceptors also induced a rapid and transient increase in DARPP-32 phosphorylation, which subsequently decreased below basal levels. In addition, activation of alpha(2)-adrenoceptors attenuated, and blockade of alpha(2)-adrenoceptors enhanced dopamine D(1) and adenosine A(2A) receptor/DARPP-32 signaling. Chemical lesioning of noradrenergic neurons mimicked the effects of alpha(2)-adrenoceptor blockade. Under conditions of alpha(2)-adrenoceptor blockade, the dopamine D(2) receptor-induced decrease in DARPP-32 phosphorylation was attenuated. Our data demonstrate that beta(1)- and alpha(2)-adrenoceptors regulate DARPP-32 phosphorylation in neostriatal neurons. G(i) activation by alpha(2)-adrenoceptors antagonizes G(s)/PKA signaling mediated by D(1) and A(2A) receptors in striatonigral and striatopallidal neurons, respectively, and thereby enhances D(2) receptor/G(i) signaling in striatopallidal neurons. alpha(2)-Adrenoceptors may therefore be a therapeutic target for the treatment of Parkinson's disease.

摘要

帕金森病动物模型研究表明,去甲肾上腺素能神经元的退化与运动功能障碍有关。几种类型的肾上腺素受体在新纹状体神经元中高度表达。然而,这些受体对纹状体信号通路的选择性作用尚未得到表征。在这项研究中,我们通过分析小鼠新纹状体切片中 Thr34 处的多巴胺/D 型环核苷酸调节磷蛋白 32kDa(DARPP-32)信号的磷酸化来研究肾上腺素受体在调节多巴胺/DARPP-32 信号中的作用。β1-肾上腺素受体的激活诱导 DARPP-32 磷酸化的快速和短暂增加。α2-肾上腺素受体的激活也诱导 DARPP-32 磷酸化的快速和短暂增加,随后降至基础水平以下。此外,α2-肾上腺素受体的激活减弱,α2-肾上腺素受体的阻断增强多巴胺 D1 和腺苷 A2A 受体/DARPP-32 信号。去甲肾上腺素能神经元的化学损伤模拟了α2-肾上腺素受体阻断的作用。在α2-肾上腺素受体阻断的情况下,多巴胺 D2 受体诱导的 DARPP-32 磷酸化减少减弱。我们的数据表明,β1-和α2-肾上腺素受体调节新纹状体神经元中的 DARPP-32 磷酸化。α2-肾上腺素受体的 G(i) 激活分别拮抗纹状体苍白球和纹状体黑质神经元中 D1 和 A2A 受体介导的 G(s)/PKA 信号,从而增强纹状体黑质神经元中的 D2 受体/G(i)信号。因此,α2-肾上腺素受体可能是治疗帕金森病的治疗靶点。

相似文献

1
Role of adrenoceptors in the regulation of dopamine/DARPP-32 signaling in neostriatal neurons.
J Neurochem. 2010 May;113(4):1046-59. doi: 10.1111/j.1471-4159.2010.06668.x. Epub 2010 Mar 4.
2
Regulation of DARPP-32 phosphorylation by three distinct dopamine D1-like receptor signaling pathways in the neostriatum.
J Neurochem. 2008 Nov;107(4):1014-26. doi: 10.1111/j.1471-4159.2008.05702.x. Epub 2008 Sep 24.
3
Role of adenosine A1 receptors in the modulation of dopamine D1 and adenosine A2A receptor signaling in the neostriatum.
Neuroscience. 2006 Aug 11;141(1):19-25. doi: 10.1016/j.neuroscience.2006.04.047. Epub 2006 Jun 5.
5
Regulation of spinophilin Ser94 phosphorylation in neostriatal neurons involves both DARPP-32-dependent and independent pathways.
J Neurochem. 2005 Dec;95(6):1642-52. doi: 10.1111/j.1471-4159.2005.03491.x. Epub 2005 Nov 21.
6
Histone H3 phosphorylation is under the opposite tonic control of dopamine D2 and adenosine A2A receptors in striatopallidal neurons.
Neuropsychopharmacology. 2009 Jun;34(7):1710-20. doi: 10.1038/npp.2008.228. Epub 2009 Jan 21.
7
Differential regulation of dopamine D1 and D2 signaling by nicotine in neostriatal neurons.
J Neurochem. 2004 Sep;90(5):1094-103. doi: 10.1111/j.1471-4159.2004.02574.x.
8
mGlu5R promotes glutamate AMPA receptor phosphorylation via activation of PKA/DARPP-32 signaling in striatopallidal medium spiny neurons.
Neuropharmacology. 2013 Mar;66:179-86. doi: 10.1016/j.neuropharm.2012.03.025. Epub 2012 Apr 7.
10

引用本文的文献

1
The chronic use of serotonin norepinephrine reuptake inhibitors facilitates dyskinesia priming in early Parkinson's disease.
J Neurol. 2024 Jul;271(7):3711-3720. doi: 10.1007/s00415-024-12400-6. Epub 2024 May 8.
3
Biological effects of inhaled crude oil vapor V. Altered biogenic amine neurotransmitters and neural protein expression.
Toxicol Appl Pharmacol. 2022 Aug 15;449:116137. doi: 10.1016/j.taap.2022.116137. Epub 2022 Jun 21.
4
Neural dynamics underlying birdsong practice and performance.
Nature. 2021 Nov;599(7886):635-639. doi: 10.1038/s41586-021-04004-1. Epub 2021 Oct 20.
6
DARPP-32 distinguishes a subset of adult-born neurons in zebra finch HVC.
J Comp Neurol. 2022 Apr;530(5):792-803. doi: 10.1002/cne.25245. Epub 2021 Nov 15.
8
Dopamine and Noradrenaline in the Brain; Overlapping or Dissociate Functions?
Front Mol Neurosci. 2020 Jan 21;12:334. doi: 10.3389/fnmol.2019.00334. eCollection 2019.
9
Expression of the Cerebral Olfactory Receptors Olfr110/111 and Olfr544 Is Altered During Aging and in Alzheimer's Disease-Like Mice.
Mol Neurobiol. 2019 Mar;56(3):2057-2072. doi: 10.1007/s12035-018-1196-4. Epub 2018 Jul 8.
10
α- and α-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.
Mol Neurobiol. 2018 Nov;55(11):8438-8454. doi: 10.1007/s12035-018-1004-1. Epub 2018 Mar 18.

本文引用的文献

1
Postural instability in Parkinson's disease: the adrenergic hypothesis and the locus coeruleus.
Expert Rev Neurother. 2009 Feb;9(2):279-90. doi: 10.1586/14737175.9.2.279.
3
Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum.
J Neurosci. 2008 Oct 15;28(42):10460-71. doi: 10.1523/JNEUROSCI.2518-08.2008.
4
Regulation of DARPP-32 phosphorylation by three distinct dopamine D1-like receptor signaling pathways in the neostriatum.
J Neurochem. 2008 Nov;107(4):1014-26. doi: 10.1111/j.1471-4159.2008.05702.x. Epub 2008 Sep 24.
5
Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs.
Nat Neurosci. 2008 Aug;11(8):932-9. doi: 10.1038/nn.2153. Epub 2008 Jul 11.
7
Noradrenaline in Parkinson's disease: from disease progression to current therapeutics.
Curr Med Chem. 2007;14(22):2330-4. doi: 10.2174/092986707781745550.
8
Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice.
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13804-9. doi: 10.1073/pnas.0702753104. Epub 2007 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验