Suppr超能文献

相似文献

1
A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking.
Bioinformatics. 2010 May 1;26(9):1169-75. doi: 10.1093/bioinformatics/btq112. Epub 2010 Mar 17.
2
Machine learning in computational docking.
Artif Intell Med. 2015 Mar;63(3):135-52. doi: 10.1016/j.artmed.2015.02.002. Epub 2015 Feb 16.
3
Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?
J Chem Inf Model. 2014 Mar 24;54(3):944-55. doi: 10.1021/ci500091r. Epub 2014 Feb 20.
4
Boosted neural networks scoring functions for accurate ligand docking and ranking.
J Bioinform Comput Biol. 2018 Apr;16(2):1850004. doi: 10.1142/S021972001850004X. Epub 2018 Feb 4.
7
SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes.
J Chem Inf Model. 2013 Aug 26;53(8):1923-33. doi: 10.1021/ci400120b. Epub 2013 Jun 10.
8
Learning from the ligand: using ligand-based features to improve binding affinity prediction.
Bioinformatics. 2020 Feb 1;36(3):758-764. doi: 10.1093/bioinformatics/btz665.
10
K: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks.
J Chem Inf Model. 2018 Feb 26;58(2):287-296. doi: 10.1021/acs.jcim.7b00650. Epub 2018 Jan 29.

引用本文的文献

3
A deep-learning approach to predict reproductive toxicity of chemicals using communicative message passing neural network.
Front Toxicol. 2025 Jul 22;7:1640612. doi: 10.3389/ftox.2025.1640612. eCollection 2025.
4
Predicting receptor-ligand pairing preferences in plant-microbe interfaces via molecular dynamics and machine learning.
Comput Struct Biotechnol J. 2025 Jun 18;27:2782-2795. doi: 10.1016/j.csbj.2025.06.029. eCollection 2025.
5
SaeGraphDTI: drug-target interaction prediction based on sequence attribute extraction and graph neural network.
BMC Bioinformatics. 2025 Jul 15;26(1):177. doi: 10.1186/s12859-025-06195-0.
6
ColdstartCPI: Induced-fit theory-guided DTI predictive model with improved generalization performance.
Nat Commun. 2025 Jul 11;16(1):6436. doi: 10.1038/s41467-025-61745-7.
8
CAML: Commutative Algebra Machine Learning─A Case Study on Protein-Ligand Binding Affinity Prediction.
J Chem Inf Model. 2025 Jul 14;65(13):6732-6743. doi: 10.1021/acs.jcim.5c00940. Epub 2025 Jun 15.
9
Graph convolutional neural networks improved target-specific scoring functions for cGAS and kRAS in virtual screening.
Comput Struct Biotechnol J. 2025 May 23;27:2176-2185. doi: 10.1016/j.csbj.2025.05.023. eCollection 2025.
10
Studying Noncovalent Interactions in Molecular Systems with Machine Learning.
Chem Rev. 2025 Jun 25;125(12):5776-5829. doi: 10.1021/acs.chemrev.4c00893. Epub 2025 Jun 9.

本文引用的文献

1
Targeted scoring functions for virtual screening.
Drug Discov Today. 2009 Jun;14(11-12):562-9. doi: 10.1016/j.drudis.2009.03.013. Epub 2009 Apr 5.
2
A chemogenomic approach to drug discovery: focus on cardiovascular diseases.
Drug Discov Today. 2009 May;14(9-10):479-85. doi: 10.1016/j.drudis.2009.02.010. Epub 2009 Mar 5.
3
Comparative assessment of scoring functions on a diverse test set.
J Chem Inf Model. 2009 Apr;49(4):1079-93. doi: 10.1021/ci9000053.
4
Chemical probes that competitively and selectively inhibit Stat3 activation.
PLoS One. 2009;4(3):e4783. doi: 10.1371/journal.pone.0004783. Epub 2009 Mar 10.
5
Computational evaluation of protein-small molecule binding.
Curr Opin Struct Biol. 2009 Feb;19(1):56-61. doi: 10.1016/j.sbi.2008.11.009. Epub 2009 Jan 21.
6
Community benchmarks for virtual screening.
J Comput Aided Mol Des. 2008 Mar-Apr;22(3-4):193-9. doi: 10.1007/s10822-008-9189-4. Epub 2008 Feb 14.
7
Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go.
Br J Pharmacol. 2008 Mar;153 Suppl 1(Suppl 1):S7-26. doi: 10.1038/sj.bjp.0707515. Epub 2007 Nov 26.
8
Molecular docking for substrate identification: the short-chain dehydrogenases/reductases.
J Mol Biol. 2008 Jan 18;375(3):855-74. doi: 10.1016/j.jmb.2007.10.065. Epub 2007 Nov 1.
10
y-Randomization and its variants in QSPR/QSAR.
J Chem Inf Model. 2007 Nov-Dec;47(6):2345-57. doi: 10.1021/ci700157b. Epub 2007 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验