CNISM and Dipartimento di Elettronica, Università di Pavia, Via Ferrata 1, Pavia, Italy.
J Biophotonics. 2010 Apr;3(4):234-43. doi: 10.1002/jbio.201000011.
The authors present the design and optimization of an optofluidic monolithic chip, able to provide optical trapping and controlled stretching of single cells. The chip is fabricated in a fused silica glass substrate by femtosecond laser micromachining which can produce both optical waveguides and microfluidic channels with great accuracy. A new fabrication procedure adopted in this work allows the demonstration of microchannels with a square cross-section, thus guaranteeing an improved quality of the trapped cell images. Femtosecond laser micromachining emerges as a promising technique for the development of multifunctional integrated biophotonic devices that can be easily coupled to a microscope platform, thus enabling a complete characterization of the cells under test.
作者提出了一种基于飞秒激光微加工技术的光流控整体芯片的设计和优化,该芯片可实现对单细胞的光捕获和可控拉伸。该芯片在熔融石英玻璃基底上制造,通过飞秒激光微加工可精确制作光学波导和微流道。本工作采用了一种新的制造工艺,可以展示具有方形横截面的微通道,从而保证了捕获细胞图像的质量得到提高。飞秒激光微加工技术是开发多功能集成生物光子器件的一种很有前途的技术,该技术可以很容易地与显微镜平台耦合,从而实现对测试细胞的全面特性分析。