School of Health and Human Performance, Dublin City University, Dublin 9, Ireland.
J Physiol. 2010 May 15;588(Pt 10):1779-90. doi: 10.1113/jphysiol.2010.188011. Epub 2010 Mar 22.
Skeletal muscle contraction increases intracellular ATP turnover, calcium flux, and mechanical stress, initiating signal transduction pathways that modulate peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha)-dependent transcriptional programmes. The purpose of this study was to determine if the intensity of exercise regulates PGC-1alpha expression in human skeletal muscle, coincident with activation of signalling cascades known to regulate PGC-1alpha transcription. Eight sedentary males expended 400 kcal (1674 kj) during a single bout of cycle ergometer exercise on two separate occasions at either 40% (LO) or 80% (HI) of . Skeletal muscle biopsies from the m. vastus lateralis were taken at rest and at +0, +3 and +19 h after exercise. Energy expenditure during exercise was similar between trials, but the high intensity bout was shorter in duration (LO, 69.9 +/- 4.0 min; HI, 36.0 +/- 2.2 min, P < 0.05) and had a higher rate of glycogen utilization (P < 0.05). PGC-1alpha mRNA abundance increased in an intensity-dependent manner +3 h after exercise (LO, 3.8-fold; HI, 10.2-fold, P < 0.05). AMP-activated protein kinase (AMPK) (2.8-fold, P < 0.05) and calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation (84%, P < 0.05) increased immediately after HI but not LO. p38 mitogen-activated protein kinase (MAPK) phosphorylation increased after both trials (2.0-fold, P < 0.05), but phosphorylation of the downstream transcription factor, activating transcription factor-2 (ATF-2), increased only after HI (2.4-fold, P < 0.05). Cyclic-AMP response element binding protein (CREB) phosphorylation was elevated at +3 h after both trials (80%, P < 0.05) and class IIa histone deacetylase (HDAC) phosphorylation increased only after HI (2.0-fold, P < 0.05). In conclusion, exercise intensity regulates PGC-1alpha mRNA abundance in human skeletal muscle in response to a single bout of exercise. This effect is mediated by differential activation of multiple signalling pathways, with ATF-2 and HDAC phosphorylation proposed as key intensity-dependent mediators.
骨骼肌收缩会增加细胞内 ATP 的周转率、钙离子通量和机械应力,从而启动信号转导途径,调节过氧化物酶体增殖物激活受体 γ 共激活因子 1α(PGC-1α)依赖性转录程序。本研究的目的是确定运动强度是否会调节人体骨骼肌中的 PGC-1α 表达,同时激活已知调节 PGC-1α 转录的信号级联反应。8 名久坐男性在两次单独的试验中,分别以 40%(LO)或 80%(HI)的强度进行单次自行车测力计运动,消耗 400 千卡(1674 千焦耳)。股外侧肌 m. 活检取自休息时和运动后+0、+3 和+19 小时。两次试验中运动时的能量消耗相似,但高强度运动持续时间更短(LO,69.9 +/- 4.0 分钟;HI,36.0 +/- 2.2 分钟,P < 0.05),糖原利用率更高(P < 0.05)。PGC-1α mRNA 丰度在运动后 3 小时呈强度依赖性增加(LO,3.8 倍;HI,10.2 倍,P < 0.05)。AMP 激活的蛋白激酶(AMPK)(2.8 倍,P < 0.05)和钙/钙调蛋白依赖性蛋白激酶 II(CaMKII)磷酸化(84%,P < 0.05)在 HI 后立即增加,但 LO 后没有增加。p38 丝裂原激活蛋白激酶(MAPK)磷酸化在两次试验后均增加(2.0 倍,P < 0.05),但下游转录因子激活转录因子 2(ATF-2)的磷酸化仅在 HI 后增加(2.4 倍,P < 0.05)。环腺苷酸反应元件结合蛋白(CREB)磷酸化在两次试验后 3 小时均升高(80%,P < 0.05),而 IIa 组组蛋白去乙酰化酶(HDAC)磷酸化仅在 HI 后增加(2.0 倍,P < 0.05)。总之,运动强度会调节人体骨骼肌中 PGC-1α mRNA 的丰度,以响应单次运动。这种效应是通过多种信号通路的差异激活介导的,ATF-2 和 HDAC 磷酸化被提议为关键的强度依赖性调节剂。